968 resultados para istruzione bilingue inglese spagnolo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: We evaluated the relationship of renal function and ischaemic and bleeding risk as well as the efficacy and safety of the P2Y12 platelet receptor inhibitor ticagrelor in stable patients with prior myocardial infarction (MI). Methods & Results: Patients with a history of MI 1-3 years prior from the Prevention of Cardiovascular Events in Patients with Prior Heart Attack Using Ticagrelor Compared to Placebo on a Background of Aspirin (PEGASUS)-TIMI 54 were stratified based on estimated glomerular filtration rate (eGFR), with<60 ml/min/1.73m2 prespecified for analysis of the effect of ticagrelor on the primary efficacy composite of cardiovascular death, MI, or stroke (MACE) and the primary safety endpoint of TIMI major bleeding. Of 20,898 patients, those with eGFR<60 (N=4,849, 23.2%) had a greater risk of MACE at 3 years relative to those without, which remained significant after multivariable adjustment (HRadj 1.54, 95% CI 1.27–1.85, p<0.001). The relative risk reduction in MACE with ticagrelor was similar in those with eGFR<60 (ticagrelor pooled vs. placebo: HR 0.81; 95% CI 0.68–0.96) vs. ≥60 (HR 0.88; 95% CI 0.77–1.00, pinteraction=0.44). However, due to the greater absolute risk in the former group, the absolute risk reduction with ticagrelor was higher: 2.7% vs. 0.63%. Bleeding tended to occur more frequently in patients with renal dysfunction. The absolute increase in TIMI major bleeding with ticagrelor was similar in those with and without eGFR<60 (1.19% vs. 1.43%), whereas the excess of minor bleeding tended to be more pronounced (1.93% vs. 0.69%). Conclusion: In patients with a history of MI, patients with renal dysfunction are at increased risk of MACE and consequently experience a particularly robust absolute risk reduction with long-term treatment with ticagrelor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La governance del settore alimentare si fonda su una struttura multilivello, ove poteri locali, nazionali, sovranazionali e globali interagiscono. In tale assetto, ogni regolatore è chiamato a proteggere interessi diversi tra loro, tra cui l'ambiente, la salute umana, il benessere animale e la libera concorrenza. La regolazione del settore alimentare, inoltre, impone la considerazione di aspetti etici e culturali, dotati di una forte matrice territoriale. In questo sistema, i valori che entrano in gioco non sono egualmente rappresentati, ma quelli considerati "minori" sono sovente sovrastati dalle esigenze di protezione di un unico interesse: la libera concorrenza su scala globale. Ne deriva che la regolazione del settore alimentare necessita di un nuovo equilibrio. Questo può richiedere sia l'adozione di nuove regole - soprattutto a livello sovranazionale - sia un'interpretazione maggiormente inclusiva dei principi e delle regole già esistenti da parte delle Corti. Tuttavia, risulta maggiormente urgente e di immediata efficacia permettere ai soggetti interessati, siano essi privati o pubblici, di partecipare alla formulazione delle politiche e delle decisioni inerenti il settore alimentare. La partecipazione procedurale è in grado di soddisfare esigenze differenti e talvolta opposte, pertanto essa è regolata dal legislatore a seconda dello scopo finale prefissato. Principalmente, essa è vista come una applicazione diretta dei principi di democrazia e trasparenza; tuttavia, il suo reale impatto sul risultato finale delle decisioni pubbliche può scostarsi considerevolemente da tale paradigma. Lo scopo di tale lavoro è analizzare i diversi modelli partecipativi implementati nei vari livelli di governo, al fine di determinarne il reale impatto sui soggetti interessati e sul bilanciamento degli interessi in gioco. La conclusione dimostra un certo livello di perplessità per ciò che riguarda l'assetto di tali garanzie nella regolazione del settore alimentare, dove lo sviluppo del concetto di democrazia partecipativa e di bilancio tra gli interessi rilevanti è ancora acerbo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli organismi vegetali mostrano una notevole capacità di adattamento alle condizioni di stress e lo studio delle componenti molecolari alla base dell'adattamento in colture cerealicole di interesse alimentare, come il frumento, è di particolare interesse per lo studio di varietà che consentano una buona produzione con basso input anche in condizioni ambientali non ottimali. L'esposizione delle colture cerealicole a stress termico durante determinate fasi del ciclo vitale influisce negativamente sulla resa e sulla qualità, a questo fine è necessario chiarire le basi genetiche e molecolari della termotolleranza per identificare geni e alleli vantaggiosi da impiegare in programmi di incrocio volti al miglioramento genetico. Numerosi studi dimostrano il coinvolgimento delle sHSP a localizzazione cloroplastica (in frumento sHSP26) nel meccanismo di acquisizione della termotolleranza e la loro interazione con diverse componenti del fotosistema II (PSII) che determinerebbe un’azione protettiva in condizioni di stress termico e altri tipi di stress. Lo scopo del progetto è quello di caratterizzare in frumento duro nuove varianti alleliche correlate alla tolleranza a stress termico mediate l'utilizzo del TILLING (Target Induced Local Lesion In Genome), un approccio di genetica inversa che prevede la mutagenesi e l'identificazione delle mutazioni indotte in siti di interesse. Durante la tesi sono state isolate e caratterizzate 3 sequenze geniche complete per smallHsp26 denominate TdHsp26-A1; TdHsp26-A2; TdHsp26-B1 e un putativo pseudogene denominato TdHsp26-A3. I geni isolati sono stati usati come target in analisi di TILLING in due popolazioni di frumento duro mutagenizzate con EMS (EtilMetanoSulfonato). Nel nostro studio sono stati impiegati due differenti approcci di TILLING: un approccio di TILLING classico mediante screening con High Resolution Melting (HRM) e un approccio innovativo che sfrutta un database di TILLING recentemente sviluppato. La popolazione di mutanti cv. Kronos è stata analizzata per la presenza di mutazioni in tutti e tre i geni individuati mediante ricerca online nel database di TILLING, il quale sfrutta la tecnica dell’exome capture sulla popolazione di TILLING seguito da sequenziamento ad alta processività. Attraverso questa tecnica sono state individuate, nella popolazione mutagenizzata di frumento duro cv. Kronos, 36 linee recanti mutazioni missenso. Contemporaneamente lo screening con HRM, effettuato su 960 genotipi della libreria di TILLING di frumento duro cv. Cham1 ha consentito di individuare mutazioni in una regione di 211bp di interesse funzionale del gene TdHsp26-B1, tra le quali 3 linee mutanti recanti mutazioni missenso in omozigosi. Alcune mutazioni missenso individuate sui due geni TdHsp26-A1 e TdHsp26-B1 sono state confermate in vivo nelle piante delle rispettive linee mutanti generando marcatori codominanti KASP (Kompetitive Allele Specific PCR) con cui è stato possibile verificare anche il grado di zigosità di tali mutazioni. Al fine di ridurre il numero di mutazioni non desiderate nelle linee risultate più interessanti, è stato eseguito il re-incrocio dei mutanti con i relativi parentali wild type ed inoltre sono stati generati alcuni doppi mutanti che consentiranno di comprendere meglio i meccanismi molecolari presieduti da questa classe genica. Gli individui F1 degli incroci sono stati poi genotipizzati con i medesimi marcatori KASP specifici per la mutazione di interesse per verificare la buona riuscita dell’incrocio. Questo approccio ha permesso di individuare ed implementare risorse genetiche utili ad intraprendere studi funzionali relativi al ruolo di smallHSP plastidiche implicate nella acquisizione di termotolleranza in frumento duro e di generare marcatori potenzialmente utili in futuri programmi di breeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New photonic crystal fiber designs are presented and numerically investigated in order to improve the state of art of high power fiber lasers. The focus of this work is targeted on the region of 2 μm laser emission, which is of high interest due to its eye-safe nature and due to the large amount of applications permitted. Thulium doped fiber amplifiers are suitable for emitting in this region. Different fiber designs have been proposed, both flexible and rod-type, with the aim to enlarge mode area while maintaining robust single mode operation. The analysis of thermal effects, caused by the high thulium quantum defect, have been taken in consideration. Solutions to counteract issues derived by detrimental thermal effects have been implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We will also evaluate the performance of said techniques in three different channel models. The third scenario deals with the application of multiuser detection in multibeam satellite systems. We will analyze a case in which the users are near the edge of the coverage area and, hence, they experience a high level of interference from adjacent cells. Also in this case, three different approaches will be compared. A classical approach in which each beam carries information for a user, a cooperative solution based on time division multiplexing, and the Alamouti scheme. The information theoretical analysis will be followed by the study of practical coded schemes. We will show that the theoretical bounds can be approached by a properly designed code or bit mapping. Finally, we will consider an Earth observation scenario, in which data is generated on the satellite and then transmitted to the ground. We will study two channel models, taking into account one or two transmit antennas, and apply techniques such as time and frequency packing, signal predistortion, multiuser detection and the Alamouti scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).