986 resultados para implants


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium, zirconium and TiZr binary alloy were fabricated using a powder metallurgical method. Appropriate surface modifying techniques were conducted on the metals to render an ability for apatite formation. Their biocompatibility has also been assessed. These materials showed potential for biomedical applications because of their excellent bioactivity and biocompatibility which may improve bonding of the implants to juxtaposed bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunocompetence handicap hypothesis (ICHH) suggests that the male sex hormone testosterone has a dual effect; it controls the development and expression of male sexually selected signals, and it suppresses the immune system. Therefore only high quality males are able to fully express secondary sexual traits because only they can tolerate the immunosuppressive qualities of testosterone. A modified version of the ICHH suggests that testosterone causes immunosuppression indirectly by increasing the stress hormone corticosterone (CORT). Lines of Japanese quail (Coturnix japonica) selected for divergent responses in levels of plasma CORT were used to test these hypotheses. Within each CORT response line (as well as in a control stock) we manipulated levels of testosterone in castrated quail by treatment with zero (sham), low or high testosterone implants, before testing the birdsʼ humoral immunity and phytohaemagglutinin (PHA)-induced immune response, as well as body condition. The PHA-induced response was not significantly affected by CORT selected line, testosterone treatment or their interaction. There was, however, a significant effect of CORT line on humoral immunity in that the control birds exhibited the greatest antibody production, but there was no significant effect of testosterone manipulation on humoral immunity. The males in the sham implant treatment group had significantly greater mass than the males in the high testosterone group, suggesting a negative effect of high testosterone on general body condition. We discuss these results in the context of current hypotheses in the field of sexual selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Japanese quail selected for reduced (low-stress, LS) rather than exaggerated (high-stress, HS) plasma corticosterone response to brief restraint have consistently shown greater cloacal gland (CG) development, an androgen-dependent trait. In this study, the effects of testosterone implants on levels of plasma testosterone and CG development in castrated LS and HS quail were determined. Stress-line males were castrated and randomly allocated to 1 of 3 testosterone treatments: the empty testosterone (ET), low testosterone (LT), or high testosterone (HT) implant group. Cloacal gland volume was determined at 4 weekly intervals that represented ranges of 1 to 9 d, 8 to 17 d, 15 to 24 d, and 22 to 31 d after castration and testosterone implantation. Levels of plasma testosterone were also assessed at the end of the study. Development of the CG was affected by quail line (LS > HS), testosterone treatment (HT > LT > ET), and time of measurement (1 to 9 d < 8 to 17 d < 15 to 24 d = 22 to 31 d after castration and testosterone implantation). A significant interaction between testosterone treatment and time of measurement on CG volume was also detected (with CG volume generally increasing with time in LT- and HT-treated quail, but not in ET-treated quail). However, even though HT implant treatments induced higher CG development than did LT treatments beyond the first interval of CG volume measurement, and despite the finding of greater CG volumes in LS than HS quail during the last 2 measurement intervals within each of the LT and HT groups, no interaction was observed between testosterone implant dosages and quail stress line on CG volume. Thus, by the end of the study, regardless of testosterone dose, CG volume was consistently greater in LS quail than in their HS counterparts. In addition, although, as expected, the testosterone implant treatment significantly altered levels of plasma testosterone (HT > LT > ET), neither quail line nor its interaction with testosterone treatment affected plasma testosterone. The present findings suggest that the often-observed depressed CG development in the HS line may be independent of testosterone effects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of artificial organs and implants for replacement of injured and diseased hard tissues such as bones, teeth and joints is highly desired in orthopedic surgery. Orthopedic prostheses have shown an enormous success in restoring the function and offering high quality of life to millions of individuals each year. Therefore, it is pertinent for an engineer to set out new approaches to restore the normal function of impaired hard tissues.

Over the last few decades, a large number of metals and applied materials have been developed with significant improvement in various properties in a wide range of medical applications. However, the traditional metallic bone implants are dense and often suffer from the problems of adverse reaction, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. Scientific advancements have been made to fabricate porous scaffolds that mimic the architecture and mechanical properties of natural bone. The porous structure provides necessary framework for the bone cells to grow into the pores and integrate with host tissue, known as osteointegration. The appropriate mechanical properties, in particular, the low elastic modulus mimicking that of bone may minimize or eliminate the stress-shielding problem. Another important approach is to develop biocompatible and corrosion resistant metallic materials to diminish or avoid adverse body reaction. Although numerous types of materials can be involved in this fast developing field, some of them are more widely used in medical applications. Amongst them, titanium and some of its alloys provide many advantages such as excellent biocompatibility, high strength-to-weight ratio, lower elastic modulus, and superior corrosion resistance, required for dental and orthopedic implants. Alloying elements, i.e. Zr, Nb, Ta, Sn, Mo and Si, would lead to superior improvement in properties of titanium for biomedical applications.

New processes have recently been developed to synthesize biomimetic porous titanium scaffolds for bone replacement through powder metallurgy. In particular, the space holder sintering method is capable of adjusting the pore shape, the porosity, and the pore size distribution, notably within the range of 200 to 500 m as required for osteoconductive applications. The present chapter provides a review on the characteristics of porous metal scaffolds used as bone replacement as well as fabrication processes of porous titanium (Ti) scaffolds through a space holder sintering method. Finally, surface modification of the resultant porous Ti scaffolds through a biomimetic chemical technique is reviewed, in order to ensure that the surfaces of the scaffolds fulfill the requirements for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results obtained from this work reveal that high porous titanium foams have fracture mechanical properties that meet and exceed the required properties of both cortical and cancellous bones. With their good biocompatibility, light weight, strong structural integrity and possibility of bone in-growth these foams are suitable for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel Mg–Zr–Sr alloys have recently been developed for use as biodegradable implant materials. The Mg–Zr–Sr alloys were prepared by diluting Mg–Zr and Mg–Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray diffraction and compressive tests. The corrosion resistance was evaluated by electrochemical analysis and hydrogen evolution measurement. The in vitro biocompatibility was assessed using osteoblast-like SaOS2 cells and MTS and haemolysis tests. In vivo bone formation and biodegradability were studied in a rabbit model. The results indicated that both Zr and Sr are excellent candidates for Mg alloying elements in manufacturing biodegradable Mg alloy implants. Zr addition refined the grain size, improved the ductility, smoothed the grain boundaries and enhanced the corrosion resistance of Mg alloys. Sr addition led to an increase in compressive strength, better in vitro biocompatibility, and significantly higher bone formation in vivo. This study demonstrated that Mg–xZr–ySr alloys with x and y ⩽5 wt.% would make excellent biodegradable implant materials for load-bearing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to understand the structure and biodegradation relationships of silk particles intended for targeted biomedical applications. Such a study is also useful in understanding structural remodelling of silk debris that may be generated from silk-based implants. Ultrafine silk particles were prepared using a combination of efficient wet-milling and spray-drying processes with no addition of chemicals other than those used in degumming. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy. Because of the rough morphology and the ultrafine size of the particles, degradation of silk particles by protease XIV was increased by about 3-fold compared to silk fibers. Upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolyzed residual macromolecules. A model of the biodegradation mechanism of silk particles was developed based on the experimental data. The model explains the process of disintegration of β-sheets, supported by quantitative secondary structural analysis and microscopic images. © 2012 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Sex allocation theory has received considerable attention, yet the mechanism(s) by which mothers skew offspring sex ratios remain unknown. In birds, females are the heterogametic sex, which potentially gives them control of whether gametes will be male or female. How females might control the sex of the gamete is unclear, but one possibility is that variation in steroid hormones may mediate this process. 2. We experimentally altered circulating levels of corticosterone in female Gouldian finches (Erythrura gouldiae), a species that demonstrates both extreme stress responses and extreme offspring sex ratio biases when breeding with a low-quality (genetically incompatible) partner. 3. During egg production, individual females received both corticosterone and metyrapone (a corticosterone-synthesis inhibitor) implants, in random order, to induce both high and low levels of circulating stress hormones (within physiological limits). 4. We found that females with elevated corticosterone levels produced male-biased sex ratios, but when the same females were treated with metyrapone they produced female-biased offspring sex ratios. 5. These stress responses are adaptive because females constrained to breeding with low-quality males can substantially increase their fitness by overproducing sons. Changes in maternal corticosterone levels during stressful situations, such as the quality of a breeding partner, may provide an endocrine mechanism that can be exploited for strategic sex allocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1.Sex allocation theory has received considerable attention, yet the mechanism(s) by which mothers skew offspring sex ratios remain unknown. In birds, females are the heterogametic sex, which potentially gives them control of whether gametes will be male or female. How females might control the sex of the gamete is unclear, but one possibility is that variation in steroid hormones may mediate this process. 2.We experimentally altered circulating levels of corticosterone in female Gouldian finches (Erythrura gouldiae), a species that demonstrates both extreme stress responses and extreme offspring sex ratio biases when breeding with a low-quality (genetically incompatible) partner. 3.During egg production, individual females received both corticosterone and metyrapone (a corticosterone-synthesis inhibitor) implants, in random order, to induce both high and low levels of circulating stress hormones (within physiological limits). 4.We found that females with elevated corticosterone levels produced male-biased sex ratios, but when the same females were treated with metyrapone they produced female-biased offspring sex ratios. 5.These stress responses are adaptive because females constrained to breeding with low-quality males can substantially increase their fitness by overproducing sons. Changes in maternal corticosterone levels during stressful situations, such as the quality of a breeding partner, may provide an endocrine mechanism that can be exploited for strategic sex allocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD work explored a novel bio-inspired approach for designing artificial blood vessel implants known as stent-grafts. The design was inspired from body design of a caterpillar. This design concept induced natural flexibility and expandability property in the new stent-graft, which is considered critical in deciding long-term health of treated patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Joint and muscular loads are the major internal loads in the human body. Knowing or being able to estimate those loads is of importance in multiple instances, such as in designing implants, predicting surgical outcomes, in estimating occupational loading, and in designing interventions. Unfortunately, the direct measurement of the body's internal forces is difficult, rather invasive, and requires surgical operations. Therefore, the need is growing for computational tools for muscular, bone and joint loading estimation. This article will present a review of the computational methods that can be utilized for musculoskeletal and joint system loading estimation. © 2014 CIMNE, Barcelona, Spain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aerobic capacity model proposes that endothermy is a by-product of selection favouring high maximal metabolic rates (MMR) and its mechanistic coupling with basal metabolic rate (BMR). Attempts to validate this model in birds are equivocal and restricted to phenotypic correlations (rP), thus failing to distinguish among- and within-individual correlations (rind and re). We examined 300 paired measurements of BMR and MMR from 60 house sparrows before and after two levels of experimental manipulation - testosterone implants and immune challenge. Overall, repeatability was significant in both BMR (R=0.25±0.06) and MMR (R=0.52±0.06). Only the testosterone treatment altered the rP between BMR and MMR, which resulted from contrasting effects on rind and re. While rind was high and significant (0.62±0.22) in sham-implanted birds, re was negative and marginally non-significant (-0.15±0.09) in testosterone-treated birds. Thus, the expected mechanistic link between BMR and MMR was apparent, but only in birds with low testosterone levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium alloy (Ti-6Al-4V) has a wide range of application in various fields of engineering. Titanium is mainly used to manufacture aerospace components like landing gear, fuselage, wings, engines etc. and biomedical components like hip joint, knee joint, dental implants etc. Titanium has outstanding material properties such as corrosion resistance, fatigue strength, tensile strength and a very good biocompatibility which makes this material very alluring for biomedical applications. Contrary, the machinability of the material is problematic because of the phase transformations and thus, titanium alloy is a challenge for machining operation. This research is a comparative analysis between the implants manufactured by traditional method of casting and machining. The femoral stem of the hip joint replacement is designed and the component is machined using a five-axis CNC machine.The machined component was subjected to surface roughness testing, tensile testing and bulk hardness testing. The values were compared with the values of titanium implants manufactured by casting. © (2014) Trans Tech Publications, Switzerland.