994 resultados para glacier
Resumo:
The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.
Resumo:
Ice-rafted debris mass accumulation rates (IRD MAR) at a drill site on the Antarctic continental margin are investigated to evaluate the linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures in the early to mid-Pliocene. ODP Site 1165 is within 400 km of the Antarctic coastline and in the direct pathway of icebergs released by the Amery Ice Shelf. The Amery Ice Shelf is the largest ice shelf in East Antarctica and it buttresses the Lambert Glacier drainage system, which accounts for 14% of the outflow from the East Antarctic Ice Sheet. IRD MAR were low during peak Southern Ocean warming in the early Pliocene. After a brief precursor, a tenfold increase in IRD MAR at 3.3 Ma marks the termination of the early Pliocene ice sheet minimum, coincident with the M2 glacial. For the mid-Pliocene, a strong correlation exists between the high-amplitude signal in the LR04 benthic stack and IRD MAR, suggesting linkages between East Antarctic ice extent, global ice volume and deep-water temperatures. The IRD record at Site 1165 provides evidence of greater sensitivity of the Lambert Glacier-Amery Ice Shelf system to Southern Ocean warming than is currently predicted by ice sheet models, which may relate to uncertainties in the understanding of ocean heat uptake, poleward heat transport and ice sheet-ocean interactions.
Resumo:
We present ice thickness and bed topography maps with a high spatial resolution (250-500 m) of a land-terminating section of the Greenland Ice Sheet derived from ground-based and airborne radar surveys. The data have a total area of ~12 000 km^2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of Isunnguata Sermia Glacier is overdeepened and reaches an elevation of ~500 m below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The compiled data sets of ground-based and airborne radar surveys cover one of the most studied regions of the Greenland Ice Sheet and can be valuable for detailed studies of ice sheet dynamics and hydrology.
Resumo:
Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136 m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of d18O reach their lowest level in the entire record around 1790. Thereafter the d18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.