996 resultados para geometric optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physically open, but electrically shielded, microwave open oven can be produced by virtue of the evanescent fields in a waveguide below cutoff. The below cutoff heating chamber is fed by a transverse magnetic resonance established in a dielectric-filled section of the waveguide exploiting continuity of normal electric flux. In order to optimize the fields and the performance of the oven, a thin layer of a dielectric material with higher permittivity is inserted at the interface. Analysis and synthesis of an optimized open oven predicts field enhancement in the heating chamber up to 9.4 dB. Results from experimental testing on two fabricated prototypes are in agreement with the simulated predictions, and demonstrate an up to tenfold improvement in the heating performance. The open-ended oven allows for simultaneous precision alignment, testing, and efficient curing of microelectronic devices, significantly increasing productivity gains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an optimization-based approach to the design of asymmetrical filter structures having the maximum number of return- or insertion-loss ripples in the passband such as those based upon Chebyshev function prototypes. The proposed approach. has the following advantages over the general purpose optimization techniques adopted previously such as: less frequency sampling is required, optimization is carried out with respect to the Chebyshev (or minimax) criterion, the problem of local minima does not arise, and optimization is usually only required for the passband. When implemented around an accurate circuit simulation, the method can be used to include all the effects of discontinuities, junctions, fringing, etc. to reduce the amount of tuning required in the final filter. The design of asymmetrical ridged-waveguide bandpass filters is considered as an example. Measurements on a fabricated filter confirm the accuracy of the design procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Published ab-initio and pseudopotential calculations for the dialkali halide systems suggest that the preferred co-linear geometry is for the metal to approach the metal end of the alkali halide. Here, ab-initio calculations on the Li2F system reveal that the well depth on the halide side in this radical is much deeper and is a local saddle-point associated with the ionic non-linear global minima. Although many features of the pseudopotential surfaces are confirmed, significant differences are apparent including the existence of a linear excited state instead of a triangular one, a considerably deeper global minimum some 50% lower in energy and a close approach between the X2A1 and the states, with the minimum 87 kJ mol-1 below the ground state asymptote. All the results can be rationalised as the avoided crossings between a long range, covalent potential dominant within the LiLiF geometry and an ionic state that forms the global minimum. Calculations on the 3rd 2A' potential indicate that even for Li + LiF collisions at ultracold temperatures the collision dynamics could involve as many as three electronic states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Margins are used in radiotherapy to assist in the calculation of planning target volumes. These margins can be determined by analysing the geometric uncertainties inherent to the radiotherapy planning and delivery process. An important part of this process is the study of electronic portal images collected throughout the course of treatment. Set-up uncertainties were determined for prostate radiotherapy treatments at our previous site and the new purpose-built centre, with margins determined using a number of different methods. In addition, the potential effect of reducing the action level from 5 mm to 3 mm for changing a patient set-up, based on off-line bony anatomy-based portal image analysis, was studied. Margins generated using different methodologies were comparable. It was found that set-up errors were reduced following relocation to the new centre. Although a significant increase in the number of corrections to a patient's set-up was predicted if the action level was reduced from 5 mm to 3 mm, minimal reduction in patient set-up uncertainties would be seen as a consequence. Prescriptive geometric uncertainty analysis not only supports calculation and justification of the margins used clinically to generate planning target volumes, but may also best be used to monitor trends in clinical practice or audit changes introduced by new equipment, technology or practice. Simulations on existing data showed that a 3 mm rather than a 5 mm action level during off-line, bony anatomy-based portal imaging would have had a minimal benefit for the patients studied in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper focuses on the development of an aircraft design optimization methodology that models uncertainty and sensitivity analysis in the tradeoff between manufacturing cost, structural requirements, andaircraft direct operating cost.Specifically,ratherthanonlylooking atmanufacturingcost, direct operatingcost is also consideredintermsof the impact of weight on fuel burn, in addition to the acquisition cost to be borne by the operator. Ultimately, there is a tradeoff between driving design according to minimal weight and driving it according to reduced manufacturing cost. Theanalysis of cost is facilitated withagenetic-causal cost-modeling methodology,andthe structural analysis is driven by numerical expressions of appropriate failure modes that use ESDU International reference data. However, a key contribution of the paper is to investigate the modeling of uncertainty and to perform a sensitivity analysis to investigate the robustness of the optimization methodology. Stochastic distributions are used to characterize manufacturing cost distributions, andMonteCarlo analysis is performed in modeling the impact of uncertainty on the cost modeling. The results are then used in a sensitivity analysis that incorporates the optimization methodology. In addition to investigating manufacturing cost variance, the sensitivity of the optimization to fuel burn cost and structural loading are also investigated. It is found that the consideration of manufacturing cost does make an impact and results in a different optimal design configuration from that delivered by the minimal-weight method. However, it was shown that at lower applied loads there is a threshold fuel burn cost at which the optimization process needs to reduce weight, and this threshold decreases with increasing load. The new optimal solution results in lower direct operating cost with a predicted savings of 640=m2 of fuselage skin over the life, relating to a rough order-of-magnitude direct operating cost savings of $500,000 for the fuselage alone of a small regional jet. Moreover, it was found through the uncertainty analysis that the principle was not sensitive to cost variance, although the margins do change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need to identify the effect of mix composition on the rheological properties of cementitious grouts using minislump, Marsh cone, cohesion plate, washout test, and cubes to determine the fluidity, the cohesion, and other mechanical properties of grouting applications. Mixture proportioning involves the tailoring of several parameters to achieve adequate fluidity, cohesion, washout resistance and compressive strength. This paper proposes a statistical design approach using a composite fractional factorial design which was carried out to model the influence of key parameters on the performance of cement grouts. The responses relate to performance included minislump, flow time using Marsh cone, cohesion measured by Lombardi plate meter, washout mass loss and compressive strength at 3, 7, and 28 days. The statistical models are valid for mixtures with water-to-binder ratio of 0.37–0.53, 0.4–1.8% addition of high-range water reducer (HRWR) by mass of binder, 4–12% additive of silica fume as replacement of cement by mass, and 0.02–0.8% addition of viscosity modifying admixture (VMA) by mass of binder. The models enable the identification of underlying factors and interactions that influence the modeled responses of cement grout. The comparison between the predicted and measured responses indicated good accuracy of the established models to describe the effect of the independent variables on the fluidity, cohesion, washout resistance and the compressive strength. This paper demonstrates the usefulness of the models to better understand trade-offs between parameters. The multiparametric optimization is used to establish isoresponses for a desirability function for cement grout. An increase of HRWR led to an increase of fluidity and washout, a reduction in plate cohesion value, and a reduction in the Marsh cone time. An increase of VMA demonstrated a reduction of fluidity and the washout mass loss, and an increase of Marsh cone time and plate cohesion. Results indicate that the use of silica fume increased the cohesion plate and Marsh cone, and reduced the minislump. Additionally, the silica fume improved the compressive strength and the washout resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical modeling approach for the prediction of the geometric characteristics of five-dimensional (5D) woven composites has been formulated. The model is driven by readily available data including the weaving parameters and constituent material properties. The new model calculates the individual proportions of fiber in each direction, areal density, overall fiber volume fraction, and laminate thickness. This information is useful for the engineer in the design and manufacture of 5D woven composites. In addition the present model outputs the mathematical definition of the 5D woven composite unit cell, which could be implemented as the geometric input for a downstream analytical model that is capable of predicting the elastic stiffness of 5D woven composites. Input parameters have been sourced from existing published work and the subsequent predictions made by the model are compared with the available experimental data on 5D woven composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of a pyrrolidine-based template using structure-based design and physicochemical considerations has provided a development candidate 20b (3082) with submicromolar potency in the HCV replicon and good pharmacokinetic properties.