995 resultados para gas diffusion electrodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the changes in concentrations of O2 and CO2 inside packages of minimally processed Pera orange. Previously selected oranges that were washed, sanitized, and chilled were peeled using hydrothermal treatment (immersion of fruits in water at 50 °C for 8 minutes). The peeled oranges were then packed in five different plastic packages under passive and active modified atmosphere (5% O2 + 10% CO2 + 85% N2). The fruits were stored at 6 °C and 12 °C. The package headspace gas composition was evaluated for twelve days at 6 °C and nine days at 12 °C. The polypropylene film (32 µm) promoted modified atmosphere similar to that initially injected (5% O2 + 10% CO2 + 85% N2) at 6 °C and 12 °C. With regard to the atmosphere modification system, the injection of a gas mixture anticipated achieving an equilibrium atmosphere inside the packages at 12 °C. At 6 °C, the gas composition inside the packages was kept close to that of the injection, but the equilibrium was not verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis research work focused on the carbonate precipitation of magnesium using magnesium hydroxide Mg(OH)2 and carbon dioxide (CO2) gas at ambient temperature and pressure. The rate of dissolution of Mg(OH)2 and precipitation kinetics were investigated under different operating conditions. The conductivity and pH of the solution were inline monitored by a Consort meter and the solid samples gotten from the precipitation reaction were analysed by a laser diffraction analyzer Malvern Mastersizer to obtain particle size distributions (PSD) of crystal samples. Also the Mg2+ concentration profiles were determined from the liquid phase of the precipitate by ion chromatography (IC) analysis. Crystal morphology of the obtained precipitates were also investigated and discussed in this work. For the carbonation reaction of magnesium hydroxide in the present work, it was found that magnesium carbonate trihydrate (nesquehonite) was the main product and its formation occurred at a pH of around 7-8. The stirrer speed has a significant effect on the dissolution rate of Mg(OH)2. The highest obtained Mg2+ concentration level was 0.424 mol L-l for the 470 rpm and 0.387 mol L-1 for the 560 rpm which corresponded to the processing time of 45 mins and 40 mins respectively. The particle size distribution shows that the average particle size keeps increasing during the reaction as the CO2 is been fed to the system. The carbonation process is kinetically favored and simple as nesquehonite formation occurs in a very short time. It is a thermodynamically and chemically stable solid product, which allows for a long-term storage of CO2. Since the carbonation reaction is a complex system which includes dissolution of magnesium hydroxide particles, absorption of CO2, chemical reaction and crystallization, the dissolution of magnesium hydroxide was studied in hydrochloric acid (HCl) solvent with and without nitrogen (N2) inert gas. It was found on the dissolution part that the impeller speed had effect on the dissolution rate. The higher the impeller speed the higher the pH of the solution, although for the highest speed of 650rpm it was not the case. Therefore, it was concluded that the optimum speed of the stirrer was 560rpm. The influence of inert gas N2 on the dissolution rate of Mg(OH)2 particles could be seen based on measured pH, electric conductivity and Mg2+ concentration curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fortsättningsvis tillgodoses största delen av världens energibehov genom förbränning av fossila bränslen, dessutom forsätter världens totala energibehov att öka. Eftersom förbränning av fossila bränslen som t.ex. olja och kol orsakar utsläpp av svaveldioxid som är skadligt för både människa och natur, finns det fortfarande ett akut behov av forskning och utveckling av metoder för svavelrening. De vanligaste teknikerna för svavelrening är våt- och semitorrskrubbning, där svaveldioxiden absorberas av en skrubbervätska. Det är allmänt känt att våtskrubbning är en av de effektivaste teknikerna för svavelrening både ekonomiskt och tekniskt sett samt den mest använda. Våtskrubbningsprocessen har dock flera nackdelar, som dess höga vatten- och energiförbrukning. I större kraftverk går ca 1-3% av dess eleffekt åt till rökgasreningsprocessen, vilket kraftigt motiverar utveckling av nya reningsprocesser samt effektivering av existerande reningsanläggningar. Skrubbervätskan som till huvudsak består av vatten innehåller vanligtvis även kalcium vars syfte är att binda svavlet. Kalciumet kan tillsättas i flera former varav bränd kalk och kalksten är de vanligaste formerna. Kalksten används ofta i svavelreningsprocessen p.g.a. dess låga pris och för att den ger upphov till den användbara biprodukten gips. Kalkstenens upplösningshastighet är en de av faktorer som kraftigast påverkar reningsprocessen. En detaljerad experimentell karakterisering och analys av kalkstenspartiklar i fast form och i vätskeform har utförts i detta arbete. En experimentell metod för att studera kalkstenens upplösningshastighet vid låg till obegränsad massöverföring har även utvecklats i detta arbete. Metoden möjliggör identifieringen av systemoberoende kinetiska parametrar, vilka kan användas för att undersöka reningsprocesser samt för att planera nya reningsanläggningar. Kinetiska modeller utvecklades genom att använda kalkstenpartiklars specifika yta, som mättes genom kväveadsorption. Efter att de kinetiska parametrarna bestämts experimentellt utvecklades en skrubbermodell för att optimera en i driftvarande skrubber. Genom att kombinera experimentellt bestämda modeller med matematisk optimering erhölls en djupare insikt i hur olika råmaterial påverkar processen och hur driftparameterar bör justeras för att minska elförbrukningen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currency is something people deal with every day in their lives. The contemporary society is very much revolving around currencies. Even though technological development has been rapid, the principle of currency has stayed relatively unchanged for a long time. Bitcoin is a digital currency that introduced an alternative to other digital currencies, and to the traditional physical currencies. Bitcoin is peer-to-peer, open source, and it erases the need of a third party in transactions. Bitcoin has since inception gained certain fame, but it has not established itself as a common currency in the world. The purpose of this study was to analyse what kind of potential does Bitcoin have to become a widely accepted currency in day-to-day transactions. The main research question was divided into three sub questions: • What kind of a process is the diffusion of new innovations? • What kinds of factors speak for the wider adoption of Bitcoin? • What kinds of factors speak against the wider adoption of Bitcoin? The purpose of the study was approached by having diffusion of innovations as the theoretical framework. The four elements in diffusion of innovations are, innovation, communication, time, and social system. The theoretical framework is applied to Bitcoin, and the research questions answered by analysing Bitcoin’s potential diffusion prospects. The body of research data consisted of media texts and statistics. In this study, content analysis was the research method. The main findings of the study are that Bitcoin has clear strengths, but it faces a large amount of uncertainty. Bitcoin’s strong areas are the transactions. They are fast, easy, and cheap. From the innovation diffusion perspective Bitcoin is still relatively unknown, and the general public’s attitudes towards it are sceptical. The research findings purport that Bitcoin has potential demand especially when the financial system of a region is dysfunctional, or when there is a financial crisis. Bitcoin is not very trusted, and the majority of people do not see a reason to start using Bitcoin in the future. A large number of people associate it with illegal activities. In general people are largely unaware of what Bitcoin is or what are the strengths and weaknesses. Bitcoin is an innovative alternative currency. However, unless people see a major need for Bitcoin due to a financial crisis, or dysfunctionality in the financial system, Bitcoin will not become much more widespread as it is today. Bitcoin’s underlying technology can be harnessed to multiple uses. Developments in that field in the future are something that future researchers could look into.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to understand the importance of b2b brands in different phases of the industrial buying process in the digital era. The research problem is approached by examining a b2b supplier brand in the context of gas supplier selection. The data was collected by interviewing individuals from ten different companies. The findings contribute to previous theory by showing that as industrial buying behaviour is eventually individual behaviour, brands can influence decision making. The relevance of a brand depends on individual’s personality and preferences. Digital media cannot be ignored in managing brand image as buyers are present in the online environment. The results reveal that traditional personal selling is, nevertheless, in a key role in brand image building and is a source of added value. The salesperson influences buyers’ perceived associations of a brand and gives the brand a face.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis was the screening of power to gas projects worldwide and reviewing the technologies used and applications for the end products. This study focuses solely on technical solutions and feasibility, economical profitability is excluded. With power grids having larger penetrations of intermittent sources such as solar and wind power, the demand and production cannot be balanced in conventional methods. Technologies for storing electric power in times of surplus production are needed, and the concept called power to gas is a solution for this problem. A total of 57 projects mostly located in Europe were reviewed by going through publications, presentations and project web pages. Hydrogen is the more popular end product over methane. Power to gas is a viable concept when power production from intermittent sources needs to be smoothed and time shifted, when carbon free fuels are produced for vehicles and when chemical industry needs carbon neutral raw materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lennard-Jones Devonshire 1 (LJD) single particle theory for liquids is extended and applied to the anharmonic solid in a high temperature limit. The exact free energy for the crystal is expressed as a convergent series of terms involving larger and larger sets of contiguous particles called cell-clusters. The motions of all the particles within cell-clusters are correlated to each other and lead to non-trivial integrals of orders 3, 6, 9, ... 3N. For the first time the six dimensional integral has been calculated to high accuracy using a Lennard-Jones (6-12) pair interaction between nearest neighbours only for the f.c.c. lattice. The thermodynamic properties predicted by this model agree well with experimental results for solid Xenon.