988 resultados para disperse dye


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benefits and costs of dispersal and philopatry of the social plateau pika (Ochotona curzoniae) were studied on the Tibetan plateau for 3 years. Although short-lived, plateau pikas live in cohesive family groups that occupy burrow systems in sedge meadow habitat Most (57.8%) plateau pikas were philopatric, and dispersal movements were extremely restricted. No juvenile females or adult pikas moved more than two family ranges between years; the greatest observed dispersal distances were by two juvenile males that moved five family ranges from the family of their birth. Traversing unfamiliar habitat was not a cost of pika dispersal because most dispersers settled in families that they could easily visit before dispersal. Dispersal movements appeared to result in equalization of density among pika families, an expected result if competition for environmental resources influenced dispersal. Males did not disperse to gain advantages in competition for mates, as evidenced by their moving to families with significantly fewer females. Females, however, moved to families with significantly more males. Males provide abundant paternal care, and significantly more offspring per female survived to become adults from families with more adult males per adult female. Evidence concerning the influence of inbreeding avoidance on natal dispersal was indirect. Some males exhibited natal philopatry; thus some families had opportunity for close inbreeding. Males and females that dispersed had no opposite-sex relatives in their new families. Philopatric pikas may have benefited by remaining in families that exhibited low local densities, and philopatric females might have benefited from social cooperation with relatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

分析了制造系统与制造过程之间的关系;论证了从过程的角度对制造进行建模更恰当;结合Agent和π演算的特点,给出Agent制造系统描述模型及基于π演算的单个Agent的BDI模型,并指出Agent和π演算结合的制造过程模型有利于进行优化目标在不同制造过程层次的分解,不论从方法的角度还是实现的角度,都适合复杂系统建模。Agent和π演算相结合可以有效分析并解决离散事件的建模与仿真中的问题。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel graphitic-nanofilament-(GNF-) supported Ru-Ba catalyst is prepared and used in ammonia synthesis reaction. The Ru-Ba/GNFs catalyst shows remarkably high activity and stability for ammonia synthesis, which can be attributed to high purity and graphitization of GNFs with unique structure. TEM micrographs of the Ru-Ba/GNFs catalysts show that Ru metal particles uniformly disperse on the outer wall of GNFs, and the particles become bigger than that before ammonia synthesis reaction after 50 h of operation at 500degreesC and 7.0 MPa, probably due to the Ru crystals covered by promoter and support materials and/or sintering of Ru crystals. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homogeneous DNA hybridization assay based on the luminescence resonance energy transfer (LRET) from a new luminescence terbium chelate, N,N,N-1,N-1-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-phenylpyridine]tetrakis(acetic acid) (BPTA)-Tb3+ (lambda(ex) = 325 nm and lambda(em) = 545 nm) to an organic dye, Cy3 (A,. = 548 nm and A,. = 565 nm), has been developed. In the system, two DNA probes whose sequences are complementary to the two different consecutive sequences of a target DNA are used; one of the probes is labeled with the Tb3+ chelate at the T-end, and the other is with Cy3 at the 5'-end. Labeling of the Tb3+ chelate is accomplished via the linkage of a biotin-labeled DNA probe with the Tb3+ chelate-labeled streptavidin. Strong sensitized emission of Cy3 was observed upon excitation of the Tb3+ chelate at 325 run, when the two probe DNAs were hybridized with the target DNA. The sensitivity of the assay was very high compared with those of the previous homogeneous-format assays using the conventional organic dyes; the detection limit of the present assay is about 30 pM of the target DNA strand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensitive homogenous time-resolved fluoroimmunoassay (TR-FIA) method for bensulfuron-methyl (BSM) based on fluorescence resonance energy transfer (FRET) from a Tb3+ fluorescent chelate with N,N,N',N'-[2,6-bis(3'-aminomethyl-1'-pyrazoly)-4-phenylpyridine] tetrakis(acetic acid) (BPTA-Tb3+) to organic dye, Cy3 or Cy3.5 has been developed. New method combined the use of BPTA-Tb3+ labeled streptavidin, Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody and biotinylated BSM-BSA conjugate (BSA is bovine serum albumin) for competitive-type immunoassay. After BPTA-Tb3+ labeled streptavidin was reacted with a competitive immune reaction solution containing biotinylated BSM-BSA, BSM sample and Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody, the sensitized and long-lived emission of Cy3 or Cy3.5 derived from FRET was measured, and thus the concentration of BSM in sample was calculated. The present method has the advantages of rapidity, simplicity and high sensitivity since the B/F (bound reagent/free reagent) separation steps and the solid-phase carrier are not necessary. The method gives the detection limit of 2.10 ng ml(-1). The coefficient variations of the method are less than 1.5% and the recoveries are in the range of 95-105% for BSM water sample measurement. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New silica-based europium fluorescent nanoparticles having surface amino groups were prepared by a covalent binding-copolymerization technique. In the nanoparticles, the fluorescent Eu3+ chelate molecules were covalently bound to silicon atoms to protect the nanoparticles from dye leaking in bio-applications. The amino groups on the surface of nanoparticles made the surface modification and bioconjugation of nanoparticles easier. The nanoparticles were characterized and developed as a new type of fluorescence probe for a highly sensitive time-resolved fluoroimmunoassay (TR-FIA) of human hepatitis B surface antigen (HBsAg).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected phiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid liquid crystalline nanoparticles can find application as nanocarriers in several fields of the daily life but, very likely, the pharmaceutical arena is the most relevant. Indeed, several problems encountered in drugs administration (e.g. critical sideeffects from antitumor drugs) require alternative, less invasive, but simultaneously efficient therapeutic routes to be explored. Novel fields of personalized nanomedicine are developing in this direction. One of the most interesting is theranostic, which calls for the design of platforms capable of combining therapeutic and diagnostic functionalities. In this optic, we explored the potential of monoolein-based cubosomes and hexosomes as nanocarriers for theranostic purposes. Our work focussed on the design of lipid nanoparticles able to deliver antineoplastic drugs and imaging probes for fluorescent optical in vitro and in vivo imaging. We developed cubosome formulations loaded with antineoplastic drugs and useful for the fluorescence imaging of cells. Such formulations were also actively targeted to cancer cells and coupled with a NIR-emitting fluorophore, which was the promise for in vivo applications. We also investigated hexosomes with encouraging results encapsulating in their lipid matrix a BODIPY derivative with solvatochromic properties, helpful for the understanding of the dye localization. Importantly, we reported (manuscript submitted) the first proof-of-principle for in vivo fluorescence optical imaging application using monoolein-based cubosomes in a healthy mouse animal model. Finally, since relatively little is known about the interaction of cubosomes with biological systems, their effects on lipid droplets, mitochondria and lipid profile of HeLa cells were deeply studied. This thesis is divided in two main parts. The introduction section reports on the essential background of the research field, and it is followed by the publications (published or submitted) resulting from these three years of work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EI Mikhailova, SP Sosnikhina, GA Kirillova, OA Tikholiz, VG Smirnov, RN Jones and G Jenkins (2001). Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). Journal of Cell Science, 114 (10), 1875-1882. Sponsorship: Russian Foundation for Basic Research (grants 00-04-48522/ 99-04-48182) RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of optical sensor technology for non-invasive determination of key quality pack parameters improved package/product quality. This technology can be used for optimization of packaging processes, improvement of product shelf-life and maintenance of quality. In recent years, there has been a major focus on O2 and CO2 sensor development as these are key gases used in modified atmosphere packaging (MAP) of food. The first and second experimental chapters (chapter 2 and 3) describe the development of O2, pH and CO2 solid state sensors and its (potential) use for food packaging applications. A dual-analyte sensor for dissolved O2 and pH with one bi-functional reporter dye (meso-substituted Pd- or Ptporphyrin) embedded in plasticized PVC membrane was developed in chapter 2. The developed CO2 sensor in chapter 3 was comprised of a phosphorescent reporter dye Pt(II)- tetrakis(pentafluorophenyl) porphyrin (PtTFPP) and a colourimetric pH indicator α-naphtholphthalein (NP) incorporated in a plastic matrix together with a phase transfer agent tetraoctyl- or cetyltrimethylammonium hydroxide (TOA-OH or CTA-OH). The third experimental chapter, chapter 4, described the development of liquid O2 sensors for rapid microbiological determination which are important for improvement and assurance of food safety systems. This automated screening assay produced characteristic profiles with a sharp increase in fluorescence above the baseline level at a certain threshold time (TT) which can be correlated with their initial microbial load and was applied to various raw fish and horticultural samples. Chapter 5, the fourth experimental chapter, reported upon the successful application of developed O2 and CO2 sensors for quality assessment of MAP mushrooms during storage for 7 days at 4°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real time monitoring of oxygenation and respiration is on the cutting edge of bioanalysis, including studies of cell metabolism, bioenergetics, mitochondrial function and drug toxicity. This thesis presents the development and evaluation of new luminescent probes and techniques for intracellular O2 sensing and imaging. A new oxygen consumption rate (OCR) platform based on the commercial microfluidic perfusion channel μ-slides compatible with extra- and intracellular O2 sensitive probes, different cell lines and measurement conditions was developed. The design of semi-closed channels allowed cell treatments, multiplexing with other assays and two-fold higher sensitivity to compare with microtiter plate. We compared three common OCR platforms: hermetically sealed quartz cuvettes for absolute OCRs, partially sealed with mineral oil 96-WPs for relative OCRs, and open 96-WPs for local cell oxygenation. Both 96-WP platforms were calibrated against absolute OCR platform with MEF cell line, phosphorescent O2 probe MitoXpress-Intra and time-resolved fluorescence reader. Found correlations allow tracing of cell respiration over time in a high throughput format with the possibility of cell stimulation and of changing measurement conditions. A new multimodal intracellular O2 probe, based on the phosphorescent reporter dye PtTFPP, fluorescent FRET donor and two-photon antennae PFO and cationic nanoparticles RL-100 was described. This probe, called MM2, possesses high brightness, photo- and chemical stability, low toxicity, efficient cell staining and high-resolution intracellular O2 imaging with 2D and 3D cell cultures in intensity, ratiometric and lifetime-based modalities with luminescence readers and FLIM microscopes. Extended range of O2 sensitive probes was designed and studied in order to optimize their spectral characteristics and intracellular targeting, using different NPs materials, delivery vectors, ratiometric pairs and IR dyes. The presented improvements provide useful tool for high sensitive monitoring and imaging of intracellular O2 in different measurement formats with wide range of physiological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months. Pump-probe transient absorption spectroscopy reveals that the excited state lifetimes and exciton binding energies of these well-defined nanotube-semiconducting polymer hybrid structures remain unchanged relative to analogous benchmark data acquired previously for standard sodium dodecylsulfate (SDS)-SWNT suspensions, regardless of solvent. These results demonstrate that the use of phase transfer catalysts with ionic semiconducting polymers that helically wrap SWNTs provide well-defined structures that solubulize SWNTs in a wide range of organic solvents while preserving critical nanotube semiconducting and conducting properties.