974 resultados para diffusion tensor imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on an interdiffusion study using an incremental diffusion couple in the V-Ga binary system, we have shown that V diffuses via the lattice, whereas Ga does so via grain boundaries, for the growth of the V3Ga phase. We estimate the contributions from the two different mechanisms, which are usually difficult to delineate in an interdiffusion study. Available tracer diffusion studies and the atomic arrangement in the crystal structure have been considered for a discussion on the diffusion mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro-to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on reactive diffusion is conducted in the Re-Si system. According to the study, ReSi1.8 phase grows with much higher thickness than the Re2Si phase, in the interdiffusion zone of bulk diffusion couples. The activation energy for integrated diffusion of ReSi1.8 is estimated to be 605 +/- 23 kJ/mol. The growth of the Re2Si phase is studied by considering an incremental diffusion couple of Re/ReSi1.8. Analysis based on the calculation of integrated diffusion coefficients indicates the reason underlying the observed high difference between the growth rates of the ReSi1.8 and Re2Si phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D C-13 and H-1 spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its selfassembly to form nanotubular structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemically activated reactants were found to facilitate the synthesis of fine powders comprising 200-400 nm range crystallites of BaBi4Ti4O15 at a significantly lower temperature (700 A degrees C) than that of solid-state reaction route. Reactants (CaCO3, Bi2O3 and TiO2) in stoichiometric ratio were ball milled for 48 h to obtain homogeneous mixture. The evolution of the BaBi4Ti4O15 phase was systematically followed using X-ray powder diffraction (XRD) technique. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to probe its structural and microstructural details. The electron diffraction studies established the presence of correlated octahedral rotations and associated long-range polar ordering. High-resolution TEM imaging nevertheless revealed structural inhomogeneities leading to intergrowth defects. Dense BaBi4Ti4O15 ceramics with an average grain size of 0.9 mu m were fabricated using mechanochemically assisted synthesized powders at relatively low temperature (1000 A degrees C). The effect of grain size on the dielectric and relaxor behaviour of BaBi4Ti4O15 ceramics was investigated. Fine-grained ceramics (average grain size similar to 0.9 mu m) showed higher diffusion in phase transition, lower temperature of phase transition, lower Vogel-Fulcher freezing temperature and higher activation energy for the polarization reversal than those for coarse-grained ceramics (average grain size similar to 7 mu m) fabricated via the conventional solid-state reaction route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion couple experiments are conducted to study phase evolutions in the Co-rich part of the Co-Ni-Ta phase diagram. This helps to examine the available phase diagram and propose a correction on the stability of the Co2Ta phase based on the compositional measurements and X-ray analysis. The growth rate of this phase decreases with an increase in Ni content. The same is reflected on the estimated integrated interdiffusion coefficients of the components in this phase. The possible reasons for this change are discussed based on the discussions of defects, crystal structure and the driving forces for diffusion. Diffusion rate of Co in the Co2Ta phase at the Co-rich composition is higher because of more number of Co-Co bonds present compared to that of Ta-Ta bonds and the presence of Co antisites for the deviation from the stoichiometry. The decrease in the diffusion coefficients because of Ni addition indicates that Ni preferably replaces Co antisites to decrease the diffusion rate. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a widely used non-invasive medical tool for detection and diagnosis of cancer. In recent years, MRI has witnessed significant contributions from nanotechnology to incorporate advanced features such as multimodality of nanoparticles, therapeutic delivery, specific targeting and the optical detectability for molecular imaging. Accurate composition, right scheme of surface chemistry and properly designed structure is essential for achieving desired properties of nanomaterials such as non-fouling surface, high imaging contrast, chemical stability, target specificity and/or multimodality. This review provides an overview of the recent progress in theranostic nanomaterials in imaging and the development of nanomaterial based magnetic resonance imaging of cancer. In particular, targeted theranostics is a promising approach along with its targeting strategy in cancer treatment using MRI and multimodal imaging. We also discuss recent advances in integrin mediated targeted MRI of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Package-board co-design plays a crucial role in determining the performance of high-speed systems. Although there exist several commercial solutions for electromagnetic analysis and verification, lack of Computer Aided Design (CAD) tools for SI aware design and synthesis lead to longer design cycles and non-optimal package-board interconnect geometries. In this work, the functional similarities between package-board design and radio-frequency (RF) imaging are explored. Consequently, qualitative methods common to the imaging community, like Tikhonov Regularization (TR) and Landweber method are applied to solve multi-objective, multi-variable package design problems. In addition, a new hierarchical iterative piecewise linear algorithm is developed as a wrapper over LBP for an efficient solution in the design space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.