1000 resultados para delta 18O


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic geochemical and sedimentological investigations have been performed on sediments from ODP Sites 798 and 799 in order to reconstruct the depositional environment in the Japan Sea through late Cenozoic times. The Miocene to Quaternary sediments from Site 798 (Oki Ridge) and Site 799 (Kita-Yamato Trough) are characterized by high organic carbon contents of up to 6%. The organic matter is mainly a mixture of marine and terrigenous material. The dominant factors controlling marine organic carbon enrichment in the sediments of Hole 798A are probably an increased surface-water productivity and/or an increased preservation rate of organic carbon under anoxic deep-water conditions. In lower Pliocene sediments at Site 798 and Miocene to Quaternary sediments at Site 799, rapid burial of organic matter in turbidites may have been important, too. Remarkable cycles of dark, laminated sediments distinctly enriched in (marine) organic carbon by up to 5% and light, bioturbated to homogeneous sediments with reduced organic carbon contents indicate dramatic short-term paleoenvironmental variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the sulfur and oxygen isotope composition of sulfate (d34SSO4 and d18OSO4, respectively) in coexisting barite and carbonate-associated sulfate (CAS), which we use to explore temporal variability in the marine sulfur cycle through the middle Cretaceous. The d34SSO4 of marine barite tracks previously reported sulfur isotope data from the tropical Pacific. The d18OSO4 of marine barite exhibits more rapid and larger isotopic excursions than the d34SSO4 of marine barite; these excursions temporally coincide with Ocean Anoxic Events (OAEs). Neither the d34SSO4 nor the d18OSO4 measured in marine barite resembles the d34SSO4 or the d18OSO4 measured in coexisting CAS. Culling our data set for elemental parameters suggestive of carbonate recrystallization (low [Sr] and high Mn/Sr) improves our record of d18OSO4 in CAS in the Cretaceous. This suggests that the CAS proxy can be impacted by carbonate recrystallization in some marine sediments. A box model is used to explore the response of the d34SSO4 and d18OSO4 to different perturbations in the marine biogeochemical sulfur cycle. We conclude that the d34SSO4 in the middle Cretaceous is likely responding to a change in the isotopic composition of pyrite being buried, coupled possibly with a change in riverine input. On the other hand, the d18OSO4 is likely responding to rapid changes in the reoxidation pathway of sulfide, which we suggest may be due to anoxic versus euxinic conditions during different OAEs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical composition of shells of the planktonic foraminifer Globigerinoides ruber (white) is frequently used to determine past sea surface conditions. Recently, it has been shown that arbitrarily defined morphotypes within this species exhibit different chemical and isotopic signatures. Here, we investigate the occurrence through time and in space of morphological types of G. ruber (white) in late Quaternary and Holocene sediments of the central and the eastern Mediterranean Sea. In 115 samples representing two distinct time intervals (MIS 1-2 and MIS 9-12) at ODP Site 964 and the piston core GeoTü-SL96, we have defined three morphological types within this species and determined their relative abundances and stable isotopic composition. A quantitative analysis of morphological variation within G. ruber (white) in four samples revealed that the subjectively defined morphotypes occupy separate segments of a continuous and homogenous morphospace. We further show that the abundance of the morphotypes changes significantly between glacials and interglacials and that the three morphotypes of G. ruber show significant offsets in their stable isotopic composition. These offsets are consistent within glacial and interglacial stages but their sign is systematically reversed between the two Sites. Since the isotopic shifts among the three G. ruber morphotypes are systematic and often exceed 1per mil, their understanding is essential for the interpretation of all G. ruber-based proxy records for the paleoceanographic development of the Mediterranean during the late Quaternary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling and proxy studies indicate that a reduction of Atlantic Meridional Overturning Circulation (AMOC) strength profoundly impacts temperatures and salinities in the (sub)tropical Atlantic, especially on subsurface levels. While previous studies focused on prominent periods of AMOC reduction during the last deglaciation, we aim to test whether similar reconfigurations of the subtropical hydrography occurred during the moderate climatic alterations punctuating the last interglacial, Marine Isotope Stage (MIS) 5. Here, we present temperature and salinity records from a Florida Straits core by combining d18O and Mg/Ca analyses on surface (Globigerinoides ruber, white) and deep-dwelling (Globorotalia crassaformis) foraminifera, covering MIS 5 in high resolution. The data reveal increasing salinities at intermediate depths during interglacial cooling episodes, decoupled from relatively stable surface conditions. This probably indicates the spatial expansion of saline Subtropical Gyre waters due to enhanced Ekman downwelling and might also point to a changed density structure and altered geostrophic balance in Florida Straits. Notably, these oceanographic alterations are not consistently occurring during periods of AMOC reduction. The data suggest that the expansion of gyre waters into Florida Straits was impeded by the increasing influence of Antarctic Intermediate Water (AAIW) from MIS 5.5 to ~107 kyr BP. Afterwards, increasingly positive benthic d13C values imply a recession of AAIW, allowing the temporary expansion of Gyre waters into Florida Straits. We argue that the inferred transient subtropical salt accumulation and warm pool expansion might have played a pivotal role in reinvigorating meridional overturning and dampen the severity of interglacial cold phases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first experimentally determined temperature dependent oxygen-18 fractionation factor between dolomite and water at low temperatures [Vasconcelos et al. 1995 doi:10.1130/G20992.1] allows now the precise calculation of temperatures during early diagenetic dolomite precipitation. We use d18O values of early diagenetic dolomite beds sampled during ODP Legs 112 and 201 on the Peru continental margin (Sites 1227, 1228 and 1229) [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x] to calculate paleo-porewater temperatures at the time of dolomite precipitation. We assumed unaltered seawater d18O values in the porewater, which is supported by d18O values of the modern porewater presented in this study. The dolomite layers in the Pleistocene part of the sedimentary columns showed oxygen isotope temperatures up to 5 °C lower than today. Since Sites 1228 and 1229 are located at 150 and 250 m below sealevel, respectively, their paleo-porewater temperatures would be influenced by considerably colder surface water during glacial sealevel lowstands. Thus, Pleistocene dolomite layers in the Peru Continental margin probably formed during glacial times. This finding is consistent with a model for dolomite precipitation in the Peru Margin recently discussed by Meister et al. [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x], where dolomite forms episodically at the sulphate methane interface. It was shown that the sulphate methane interface migrates upwards and downwards within the sedimentary column, but dolomite layers may only form when the sulphate-methane interface stays at a fixed depth for a sufficient amount of time. We hypothesize that the sulphate-methane interface persists within TOC-rich interglacial sediments, while this zone is buried by TOC-poor sedimentation during glacial times. Thus, the presented oxygen isotope data provide additional information on the timing of early diagenetic dolomite formation and a possible link between episodicity in dolomite formation and sealevel variations. A similar link between early diagenesis and oceanography may also explain spacing of dolomite layers in a Milankovitch type pattern observed in the geological record, such as in the Miocene Monterey Formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a gravity core from the eastern Mediterranean Sea, a chemically and mineralogically distinct, 5.5-cm-thick layer is present above sapropel S-1 and overlain by hemipelagic marls. Calcite is completely absent in this exotic layer, dolomite is present only in small amounts, and the Cr concentrations are significantly enhanced. The layer was deposited primarily under reducing conditions, but the distributions of redox-sensitive elements show that a large part of the exotic layer is now oxidised by a downward-progressing oxidation front. Sediments from within the nearby anoxic, hypersaline Urania Basin are similar to those from the exotic layer, in particular in S-, C-, and O-isotope distributions of pyrite and dolomite, as well as increased Cr concentrations. Mud expulsion due to expansion of gas-rich mud is proposed to explain the presence of the exotic layer outside the Urania Basin. The deposition of an anoxic layer above S-1 shielded the sapropel from oxidation which resulted in the rare occurrence of a complete preservation of S-1 and provides the first minimum age for the start of anoxic mud accumulation in the Urania Basin.