976 resultados para cotton seed oil
Resumo:
Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.
IMPORTANCE
Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.
Resumo:
The predominant fear in capital markets is that of a price spike. Commodity markets differ in that there is a fear of both upward and down jumps, this results in implied volatility curves displaying distinct shapes when compared to equity markets. The use of a novel functional data analysis (FDA) approach, provides a framework to produce and interpret functional objects that characterise the underlying dynamics of oil future options. We use the FDA framework to examine implied volatility, jump risk, and pricing dynamics within crude oil markets. Examining a WTI crude oil sample for the 2007–2013 period, which includes the global financial crisis and the Arab Spring, strong evidence is found of converse jump dynamics during periods of demand and supply side weakness. This is used as a basis for an FDA-derived Merton (1976) jump diffusion optimised delta hedging strategy, which exhibits superior portfolio management results over traditional methods.
Resumo:
The kinetics of hydrodeoxygenation of waste cooking oil (WCO) is investigated with unsupported CoMoS catalysts. A kinetic model is established and a comprehensive analysis of each reaction pathway is carried out. The results show that hydrodecarbonylation/decarboxylation (HDC) routes are the predominant reaction pathways in the elimination of oxygen, with the rate constant three times as high as that of hydrodeoxygenation (HDO). However, the HDC activity of the CoMoS catalyst deactivates due to gradual loss of sulfur from the catalyst. HDO process is insensitive to the sulfur deficiency. The kinetic modeling shows that direct hydrodecarbonylation of fatty acids dominates the HDC routes and, in the HDO route, fatty acids are transferred to aldehydes/alcohols and then to C-18 hydrocarbons, a final product, and the reduction of acids is the rate limiting step. The HDO route via alcohols is dominant over aldehydes due to a significantly higher reaction rate constant. The difference of C-18/C-17 ratio in unsupported and supported catalysts show that a support with Lewis acid sites may play an important role in the selectivity for the hydrodeoxygenation pathways and promoting the final product quality
Resumo:
A number of tetraalkylammonium methylcarbonate and hydrogencarbonate based ionic liquids are shown to be capable of reacting with the naphthenic acids contained in Doba crude oil via a neutralisation reaction. Spectral studies show that the ionic liquids neutralisation mechanism involves the formation of an ionic liquid-naphthenate complex, liberating methanol and carbon dioxide. Extraction of the neutralised complex into a separate methanol phase and subsequent regeneration using aqueous carbonic acid results in ∼70% of the ionic liquid being recovered for recycle. Isolation of the naphthenic acids shows that these make up to 0.85 wt% of the crude oil. Speciation of the naphthenic acids shows a mixture of monocyclic, through to tetracyclic structures with carbon numbers in the range C12-C40.
Resumo:
Following the collapse of the Soviet Union in 1991, the newly independent oil-rich country of Kazakhstan has become a major recipient of foreign direct investment (FDI). Although international organisations such as the IMF and UNCTAD have claimed that FDI could be considered an engine in the transition from state socialism and as a powerful force for integration of this region into the global economy; this investment also poses significant risks to Kazakhstan. These risks fall into two broad categories: The first category can be broadly described as issues associated with the “resource curse” or the “Dutch Disease”. The term Dutch Disease describes a situation where booming demand in oil exporting countries, due to high oil revenues, leads to shift of an economy’s productive resources from the tradeable sector to the non-tradeable sector. The second category is associated with the over-dependency of oil exporting countries on a relatively small number of large multinational corporations (MNCs). This over-dependency can lead to a situation where licenses and concessions are granted at less favourable conditions than if they were auctioned in an efficient market. Examining the licensing policy of the Kazakhstani Energy and Mineral Resource Ministry, this paper notes that the latter issue of over-dependency has become less of a risk due to deliberate efforts to diversify investment relationships. Notwithstanding this situation there is some evidence that it remains difficult for oil exporting nations such as Kazakhstan to ensure that oil revenues are channelled into sustainable economic development.
Resumo:
Seeds are traditionally considered as common or even public goods, their traits as ‘products of nature’. They are also essential to biodiversity, food security and food sovereignty. However, a suite of techno-legal interventions has legislated the enclosure of seeds: seed patents, plant variety protections, and stewardship agreements. These instruments create and protect private proprietary interests over plant material and point to the interface between seeds, capitalism, and law. In the following article, we consider the latest innovations, the bulk of which have been directed toward genetically disabling the reproductive capacities of seeds (terminator technology) or tying these capacities to outputs (‘round-up necessary’). In both instances, scarcity moves from artificial to real.
For the agro-industrial complex, the innovations are perfectly rational as they can simultaneously control supply and demand. For those outside the complex, however, the consequences are potentially ruinous. The practices of seed-saving and exchange no longer are feasible, even covertly. Contemporary genetic controls have upped the ante, by either disabling the reproductive capacity of seeds or, through cross-pollination and outcrossing, facilitating the autonomous spread of the genetic modifications that are importantly still traceable, identifiable and therefore capable of legal protection. In both instances, genuine scarcity becomes the new standard as private interests dominate what was a public sphere.
Resumo:
DOG1 is a key regulator of seed dormancy in Arabidopsis and other plants. Interestingly, the C-terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript, is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutation. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterize a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.