976 resultados para combustion turbine
Resumo:
The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.
Resumo:
Lappeenrannan teknillinen yliopisto tutkii älykkäiden sähköverkkojen kehittämistä. Yliopisto on hankkinut sähköverkkoonsa tuuliturbiinin ja aurinkopaneeleita, joilla pystytään tuottamaan sähköenergiaa sähköverkkoon. Näitä tuotantoja voidaan käyttää myös tutkimuksessa. Tässä työssä luodaan simulaatiomalli yliopiston sähköverkosta Matlab® Simulink® -ohjelmalla. Simulaatiomalliin mallinnetaan yliopiston sisäinen keskijänniteverkko ja osa pienjänniteverkosta. Simulaatiomalli toteutetaan ohjelman valmiilla komponenteilla, joihin lasketaan tarvittavat parametrit. Tuuliturbiinin ja aurinkopaneelien sähköntuotantotehot määritetään säätiladatojen avulla. Verkon komponenteille lasketaan arvot komponenttien tyyppitietojen perusteella ja asetetaan simulaatiomallin parametreiksi. Simulaatiomalli luodaan yliopiston sisäisen verkon tehonjaon tarkastelemiseksi. Työssä selvitetään myös mahdollisuuksia luodun simulaatiomallin käyttämiseen vikatilanteiden tarkastelussa.
Resumo:
Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.
Resumo:
The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.
Resumo:
Life cycle assessment (LCA) is one of the most established quantitative tools for environmental impact assessment of products. To be able to provide support to environmentally-aware decision makers on environmental impacts of biomass value-chains, the scope of LCA methodology needs to be augmented to cover landuse related environmental impacts. This dissertation focuses on analysing and discussing potential impact assessment methods, conceptual models and environmental indicators that have been proposed to be implemented into the LCA framework for impacts of land use. The applicability of proposed indicators and impact assessment frameworks is tested from practitioners' perspective, especially focusing on forest biomass value chains. The impacts of land use on biodiversity, resource depletion, climate change and other ecosystem services is analysed and discussed and the interplay in between value choices in LCA modelling and the decision-making situations to be supported is critically discussed. It was found out that land use impact indicators are necessary in LCA in highlighting differences in impacts from distinct land use classes. However, many open questions remain on certainty of highlighting actual impacts of land use, especially regarding impacts of managed forest land use on biodiversity and ecosystem services such as water regulation and purification. The climate impact of energy use of boreal stemwood was found to be higher in the short term and lower in the long-term in comparison with fossil fuels that emit identical amount of CO2 in combustion, due to changes implied to forest C stocks. The climate impacts of energy use of boreal stemwood were found to be higher than the previous estimates suggest on forest residues and stumps. The product lifetime was found to have much higher influence on the climate impacts of woodbased value chains than the origin of stemwood either from thinnings or final fellings. Climate neutrality seems to be likely only in the case when almost all the carbon of harvested wood is stored in long-lived wooden products. In the current form, the land use impacts cannot be modelled with a high degree of certainty nor communicated with adequate level of clarity to decision makers. The academia needs to keep on improving the modelling framework, and more importantly, clearly communicate to decision-makers the limited certainty on whether land-use intensive activities can help in meeting the strict mitigation targets we are globally facing.
Resumo:
Nykyajan jatkuvasti kiristyvät päästörajoitukset ja ilmastonmuutoksen uhka ovat ajavia voimia kehittämään voimalaitosten tekniikkaa energiatehokkaampaan ja ympäristöystävällisempään suuntaan. Polttomoottoritekniikan parantaminen on tärkeä osa tätä kehitystä, mutta jo nykyisiä moottoreita voitaisiin ajaa energiate-hokkaammin käyttämällä akustoa ja älykästä säätöjärjestelmää apuna. Työssä tutkitaan simulaatioiden avulla voidaanko ulkomerellä toimivan huolto-aluksen energiatehokkuutta parantaa muokkaamalla sen tehon tuottoa keskitehoes-timaattorin ja akuston avulla.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.
Resumo:
Kemira Chemicals Oy:n Joutsenon tehtailla valmistetaan lipeää, suolahappoa, natriumhypokloriittia sekä natriumkloraattia. Lipeää, suolahappoa ja natriumhypokloriittia valmistetaan lipeätehtaassa. Natriumkloraattia valmistetaan kloraattitehtaassa. Kloraatti- ja lipeätehtaan tuotteet valmistetaan elektrolyysimenetelmällä. Elektrolyysien sivutuotteena syntyy vetykaasua, joka voidaan käyttää suolahapon valmistukseen, vetyvoimalaitoksen polttoaineena tai myydä asiakkaalle. Työn tavoitteena oli tarkastella vedyn käyttöä Joutsenon tehtailla. Tarkastelun tavoitteena oli löytää mahdollisia kehitys- tai jatkotutkimuskohteita vety- ja höyryjärjestelmästä. Koska vetyä käytetään myös vetyvoimalaitoksen polttoaineena, joka tuottaa tehtailla tarvittavan prosessihöyryn, tarkasteltiin työssä myös höyryn käyttöä tehtailla. Tarkastelua varten tehtiin Microsoft Excel-pohjainen taselaskentamalli, jolla simuloitiin vedyn ja höyryn käyttöä tehtailla. Työn tuloksena saatiin Excel-pohjainen simulointimalli, jolla pystyttiin tutkimaan vedyn ja höyryn käyttöä. Vedyn ja höyryn käyttöä tutkittiin viidessä eri skenaariossa. Skenaariossa yksi määritettiin pienimmät mahdolliset elektrolyysiin syötettävät sähkövirran arvot, joilla tehtaita on turvallista käyttää. Skenaariossa kaksi määritettiin pienimmät mahdolliset elektrolyysiin syötettävät sähkövirran arvot, joilla voimalaitoksen turbiini pysyisi ajossa. Skenaariossa kolme määritettiin tehtaiden tämän hetkinen maksimi kapasiteetti. Skenaarioissa neljä ja viisi tutkittiin, miten mahdollinen tehtaiden tuotantojen kasvattaminen vaikuttaisi vety- ja höyryjärjestelmään. Työn tuloksien perusteella kehitys- ja jatkotutkimuskohteita olisivat lipeän haihdutuksen höyryn kulutuksen pienentäminen, turbiinin käyttöajan kasvattaminen sekä eri lähteistä saatavan hukkalämmön parempi hyödyntäminen kaukolämmön tuotannossa. Tehtaiden tuotantoja kasvatettaessa on syytä kiinnittää huomioita myös voimalaitoksen pääkattilan ja turbiinin kapasiteettiin.
Resumo:
Tässä työssä perehdytään korkeasti kuormitettujen soodakattiloiden tyypillisiin ongelmiin. Ongelmia ovat likaantuminen ja tukkeutuminen sekä liialliset päästöt. Työn teoriaosassa esitetään taustat likaantumiselle ja päästöjen muodostumiselle. Molemmat johtuvat suurelta osin tulipesän huonosta toiminnasta. Soodakattilan ilmajärjestelmä ja mustalipeän ruiskutus vaikuttavat tulipesän toimintaan. Usein tulipesän toimintaa voidaan parantaa ilmajärjestelmän ja lipeänruiskutuksen säätöjä muuttamalla. Suurempi muutos tulipesän toimintaan saadaan uusimalla perinteinen sekundääri-ilmajärjestelmä vertikaali-ilmajärjestelmäksi. Nykyaikainen vertikaali-ilmajärjestelmä sekoittaa savukaasut tehokkaasti ja saa aikaan tasaisemman virtauksen tulipesään. Myös mustalipeän korkea kloori- ja kaliumpitoisuus voivat aiheuttaa lämpöpintojen likaantumista. Oikea nuohointen sijainti on tärkeä tekijä kattilan puhtaana pysymisen kannalta. Työn kokeellisessa osassa selvitetään, kuinka erään eukalyptussellutehtaan korkeasti kuormitetun soodakattilan käytettävyyttä voidaan parantaa ja kapasiteettia nostaa soodakattilan toimintaa virittämällä. Kattilan nykyinen ajomalli ja ongelmat selvitettiin. Tulipesän toimintaa testattiin muuttamalla ilmajakoa primääri-, sekundääri- ja tertiääri-ilman välillä ja muuttamalla sekundääri-ilman syöttöä tulipesään. Testien ja kerätyn tiedon perusteella voitiin päätellä, miten soodakattilaa kannattaa modernisoida kapasiteetin nostamiseksi ja käytettävyyden parantamiseksi. Usein tulipesän toimintaa ja käytettävyyttä voidaan parantaa paljon jo pienilläkin muutostöillä. Kapasiteetin nostaminen vaatii tavallisesti suuremman investoinnin ja pidennetyn vuosihuoltoseisokin.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
Master’s thesis Biomass Utilization in PFC Co-firing System with the Slagging and Fouling Analysis is the study of the modern technologies of different coal-firing systems: PFC system, FB system and GF system. The biomass co-fired with coal is represented by the research of the company Alstom Power Plant. Based on the back ground of the air pollution, greenhouse effect problems and the national fuel security today, the bioenergy utilization is more and more popular. However, the biomass is promoted to burn to decrease the emission amount of carbon dioxide and other air pollutions, new problems form like slagging and fouling, hot corrosion in the firing systems. Thesis represent the brief overview of different coal-firing systems utilized in the world, and focus on the biomass-coal co-firing in the PFC system. The biomass supply and how the PFC system is running are represented in the thesis. Additionally, the new problems of hot corrosion, slagging and fouling are mentioned. The slagging and fouling problem is simulated by using the software HSC Chemistry 6.1, and the emissions comparison between coal-firing and co-firing are simulated as well.