980 resultados para coarse fraction
Resumo:
Troposphärisches Ozon ist bekannt als wichtiges Oxidationsmittel und als Vorläufergas hoch reaktiver Radikale. Es zählt zu den wichtigsten Treibhausgasen und wirkt bei hohen Konzentrationen an der Erdoberfläche giftig für alle Lebewesen. Zwar wird der Großteil des troposphärischen Ozons photochemisch produziert, ein erheblicher Anteil hat aber stratosphärischen Ursprung und wird entlang von Tropopausenfalten in Zyklonen in die Troposphäre transportiert. Dieser Transport von Luftmassen aus der Stratosphäre in diernTroposphäre (STT) kann zu einem kurzzeitigen, starken Ozonanstieg am Boden führen und langfristig die Chemie der Troposphäre beeinflussen. Die Quantifizierung des Ozoneintrages und die Identifizierung der dafür verantwortlichen Prozesse ist mit großen Unsicherheiten belastet und ein aktuelles Forschungsthema.rnAufgrund ihrer groben Auflösung ist es mit globalen Modellen nicht möglich, die Details dieser STT-Prozesse zu erfassen. Deshalb wird in dieser Arbeit das Modellsystem MECO(n) genutzt, welches das regionale Atmosphärenchemie- und Klimamodell COSMO/MESSy mit dem globalen Chemie-Klimamodell ECHAM5/MESSy (EMAC) koppelt. Eine einheitliche Prozessparametrisierung ermöglicht konsistente, simultane Simulationen in verschiedenen Modellauflösungen. Ein als Teil dieser Arbeit neu entwickeltes Submodell erlaubt die Initialisierung künstlicher, passiver Tracer in Abhängigkeit verschiedener Variablen. Mit einem auf diese Weise freigesetzten, stratosphärischen Tracer lässt sich Ozon mit stratosphärischer Herkunft von solchem, das photochemisch produziert wurde, unterscheiden.rnIm Rahmen einer Fallstudie werden die Austauschprozesse an einer Tropopausenfalte sowohl aus der Eulerischen, als auch aus der Lagrangeschen Perspektive betrachtet. Die Analyse der STT-Prozesse zeigt, dass Luftmassen aus der Stratosphäre durch turbulente und diabatische Prozesse am Rand der Tropopausenfalte in die Troposphäre gelangen und anschließend bis zum Boden transportiert werden. Diese absinkenden, stratosphärischen Luftmassen führen in den Simulationen zu Ozonanstiegen am Boden, die mit Beobachtungsdaten evaluiert werden können. Es wird gezeigt, dass die Ergebnisse der feiner auflösendenrnModellinstanz gut mit den Messungen übereinstimmen.rnIn einer Lagrangeschen Analyse lassen sich Mischungszeitskalen für STT-Prozesse bestimmen. Es wird gezeigt, dass Luftpakete, die sich länger als zehn Stunden in der Troposphäre aufhalten, diese durch den Eintrag ihrer stratosphärischen Tracereigenschaften beeinflussen und daher nicht vernachlässigbar sind. Eine weitere Studie gibt Aufschluss über die Effektivität der Mischung an Tropopausenfalten: Fast die gesamte Luftmasse, die sich zu einem bestimmten Zeitpunkt in der Tropopausenfalte befindet, gelangt innerhalb von zwei Tagen in die Troposphäre.
Resumo:
In this thesis I present a new coarse-grained model suitable to investigate the phase behavior of rod-coil block copolymers on mesoscopic length scales. In this model the rods are represented by hard spherocylinders, whereas the coil block consists of interconnected beads. The interactions between the constituents are based on local densities. This facilitates an efficient Monte-Carlo sampling of the phase space. I verify the applicability of the model and the simulation approach by means of several examples. I treat pure rod systems and mixtures of rod and coil polymers. Then I append coils to the rods and investigate the role of the different model parameters. Furthermore, I compare different implementations of the model. I prove the capability of the rod-coil block copolymers in our model to exhibit typical micro-phase separated configurations as well as extraordinary phases, such as the wavy lamellar state, percolating structuresrnand clusters. Additionally, I demonstrate the metastability of the observed zigzag phase in our model. A central point of this thesis is the examination of the phase behavior of the rod-coil block copolymers in dependence of different chain lengths and interaction strengths between rods and coil. The observations of these studies are summarized in a phase diagram for rod-coil block copolymers. Furthermore, I validate a stabilization of the smectic phase with increasing coil fraction.rnIn the second part of this work I present a side project in which I derive a model permitting the simulation of tetrapods with and without grafted semiconducting block copolymers. The effect of these polymers is added in an implicit manner by effective interactions between the tetrapods. While the depletion interaction is described in an approximate manner within the Asakura-Oosawa model, the free energy penalty for the brush compression is calculated within the Alexander-de Gennes model. Recent experiments with CdSe tetrapods show that grafted tetrapods are clearly much better dispersed in the polymer matrix than bare tetrapods. My simulations confirm that bare tetrapods tend to aggregate in the matrix of excess polymers, while clustering is significantly reduced after grafting polymer chains to the tetrapods. Finally, I propose a possible extension enabling the simulation of a system with fluctuating volume and demonstrate its basic functionality. This study is originated in a cooperation with an experimental group with the goal to analyze the morphology of these systems in order to find the ideal morphology for hybrid solar cells.
Resumo:
Systolic right ventricular (RV) function is an important predictor in the course of various congenital and acquired heart diseases. Its practical determination by echocardiography remains challenging. We compared routine assessment of lateral tricuspid annular systolic motion velocity (TV(lat), cm/s) using pulsed-wave tissue Doppler imaging from the apical 4-chamber view with cardiac magnetic resonance (CMR) as reference method.
Resumo:
Introduction Reduced left ventricular function in patients with severe symptomatic valvular aortic stenosis is associated with impaired clinical outcome in patients undergoing surgical aortic valve replacement (SAVR). Transcatheter Aortic Valve Implantation (TAVI) has been shown non-inferior to SAVR in high-risk patients with respect to mortality and may result in faster left ventricular recovery. Methods We investigated clinical outcomes of high-risk patients with severe aortic stenosis undergoing medical treatment (n = 71) or TAVI (n = 256) stratified by left ventricular ejection fraction (LVEF) in a prospective single center registry. Results Twenty-five patients (35%) among the medical cohort were found to have an LVEF≤30% (mean 26.7±4.1%) and 37 patients (14%) among the TAVI patients (mean 25.2±4.4%). Estimated peri-interventional risk as assessed by logistic EuroSCORE was significantly higher in patients with severely impaired LVEF as compared to patients with LVEF>30% (medical/TAVI 38.5±13.8%/40.6±16.4% versus medical/TAVI 22.5±10.8%/22.1±12.8%, p <0.001). In patients undergoing TAVI, there was no significant difference in the combined endpoint of death, myocardial infarction, major stroke, life-threatening bleeding, major access-site complications, valvular re-intervention, or renal failure at 30 days between the two groups (21.0% versus 27.0%, p = 0.40). After TAVI, patients with LVEF≤30% experienced a rapid improvement in LVEF (from 25±4% to 34±10% at discharge, p = 0.002) associated with improved NYHA functional class at 30 days (decrease ≥1 NYHA class in 95%). During long-term follow-up no difference in survival was observed in patients undergoing TAVI irrespective of baseline LVEF (p = 0.29), whereas there was a significantly higher mortality in medically treated patients with severely reduced LVEF (log rank p = 0.001). Conclusion TAVI in patients with severely reduced left ventricular function may be performed safely and is associated with rapid recovery of systolic left ventricular function and heart failure symptoms.
Resumo:
Background— The age, creatinine, and ejection fraction (ACEF) score (age/left ventricular ejection fraction+1 if creatinine >2.0 mg/dL) has been established as an effective predictor of clinical outcomes in patients undergoing elective coronary artery bypass surgery; however, its utility in “all-comer” patients undergoing percutaneous coronary intervention is yet unexplored. Methods and Results— The ACEF score was calculated for 1208 of the 1707 patients enrolled in the LEADERS trial. Post hoc analysis was performed by stratifying clinical outcomes at the 1-year follow-up according to ACEF score tertiles: ACEFlow ≤1.0225, 1.0225< ACEFmid ≤1.277, and ACEFhigh >1.277. At 1-year follow-up, there was a significantly lower number of patients with major adverse cardiac event–free survival in the highest tertile of the ACEF score (ACEFlow=92.1%, ACEFmid=89.5%, and ACEFhigh=86.1%; P=0.0218). Cardiac death was less frequent in ACEFlow than in ACEFmid and ACEFhigh (0.7% vs 2.2% vs 4.5%; hazard ratio=2.22, P=0.002) patients. Rates of myocardial infarction were significantly higher in patients with a high ACEF score (6.7% for ACEFhigh vs 5.2% for ACEFmid and 2.5% for ACEFlow; hazard ratio=1.6, P=0.006). Clinically driven target-vessel revascularization also tended to be higher in the ACEFhigh group, but the difference among the 3 groups did not reach statistical significance. The rate of composite definite, possible, and probable stent thrombosis was also higher in the ACEFhigh group (ACEFlow=1.2%, ACEFmid=3.5%, and ACEFhigh=6.2%; hazard ratio=2.04, P<0.001). Conclusions— ACEF score may be a simple way to stratify risk of events in patients treated with percutaneous coronary intervention with respect to mortality and risk of myocardial infarction.
Fluctuation phenotyping based on daily fraction of exhaled nitric oxide values in asthmatic children
Resumo:
Fraction of exhaled nitric oxide (Feno), a marker of airway inflammation, has been proposed to be useful for asthma management, but conclusions are inconsistent. This might be due to the failure of mean statistics to characterize individual variability in Feno values, which is possibly a better indicator of asthma control than single measurements.
Resumo:
The aim of this study was to evaluate whether a change of left ventricular ejection fraction (LVEF) depending on percentage of right ventricular pacing is found in a real-life setting of a pacemaker clinic.
Resumo:
Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.
Resumo:
This study investigated the changes in somatic cell counts (SCC) in different fractions of milk, with special emphasis on the foremilk and cisternal milk fractions. Therefore, in Experiment 1, quarter milk samples were defined as strict foremilk (F), cisternal milk (C), first 400 g of alveolar milk (A1), and the remaining alveolar milk (A2). Experiment 2 included 6 foremilk fractions (F1 to F6), consisting of one hand-stripped milk jet each, and the remaining cisternal milk plus the entire alveolar milk (RM). In Experiment 1, changes during milking indicated the importance of the sampled milk fraction for measuring SCC because the decrease in the first 3 fractions (F, C, and A1) was enormous in milk with high total quarter SCC. The decline in SCC from F to C was 50% and was 80% from C to A1. Total quarter SCC presented a value of approximately 20% of SCC in F or 35% of SCC in C. Changes in milk with low or very low SCC were marginal during milking. Fractions F and C showed significant differences in SCC among different total SCC concentrations. These differences disappeared with the alveolar fractions A1 and A2. In Experiment 2, a more detailed investigation of foremilk fractions supported the findings of Experiment 1. A significant decline in the foremilk fractions even of F1 to F6 was observed in high-SCC milk at concentrations >350 x 10(3) cells/mL. Although one of these foremilk fractions presented only 0.1 to 0.2% of the total milk, the SCC was 2- to 3-fold greater than the total quarter milk SCC. Because the trait of interest (SCC) was measured directly by using the DeLaval cell counter (DCC), the quality of measurement was tested. Statistically interesting factors (repeatability, recovery rate, and potential matrix effects of milk) proved that the DCC is a useful tool for identifying the SCC of milk samples, and thus of grading udder health status. Generally, the DCC provides reliable results, but one must consider that SCC even in strict foremilk can differ dramatically from SCC in the total cisternal fraction, and thus also from SCC in the alveolar fraction.
Resumo:
Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of approximately 65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.
Resumo:
Trials on implantable cardioverter-defibrillators (ICD) for patients after acute myocardial infarction (AMI) have highlighted the need for risk assessment of arrhythmic events (AE). The aim of this study was to evaluate risk predictors based on a novel approach of interpreting signal-averaged electrocardiogram (SAECG) and ejection fraction (EF).