976 resultados para chemically modified silica gel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pb(2)CrO(5) nanoparticles were embedded in an amorphous SiO(2) matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb(2)CrO(5)/SiO(2) compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb(2)CrO(5)/SiO(2) compounds were shown and discussed. In general, an acid pH initially dissolves Pb(2)CrO(5) nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO(4) composition with grain size around 6 nm in SiO(2) matrix. No Pb(2)CrO(5) solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ruthenium hydroxide supported on silica-coated magnetic nanoparticles was shown to be an efficient heterogeneous catalyst for the liquid-phase oxidation of a wide range of alcohols using molecular oxygen as a sole oxidant in the absence of co-catalysts or additives. The material was prepared through the loading of the amino modified support with ruthenium(III) ions from an aqueous solution of ruthenium(III) chloride followed by treatment with sodium hydroxide to form ruthenium hydroxide species. Characterizations suggest that ruthenium hydroxide is highly dispersed on the support surface, with no ruthenium containing crystalline phases being detected. Various carbonylic monoterpenoids important for fragrance and pharmaceutical industries can be obtained in good to excellent yields starting from biomass-based monoterpenic alcohols, such as isobomeol, perillyl alcohol, carveol, and citronellol. The catalyst undergoes no metal leaching and can be easily recovered by the application of an external magnet and re-used. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the surface of the Eu-BTC = [Eu(EMA)(H(2)O)(2)], [Eu(TLA)(H(2)O)(4)] and [Eu(TMA)(H(2)O)(6)] complexes (EMA = 1,2,3-benzenetricarboxylate, TLA = 1,2,4-benzenetricarboxylate and TMA = 1,3,5-benzenetricarboxylate) was modified using 3-aminopropyltriethoxysilane (APTES) by a new microwave assisted method that proved to be simple and efficient. According to our observations, the most efficient luminescence is the material based on APTES incorporating [Eu(TMA)(H(2)O)(6)] complexes, denoted as Eu-TMA-Si, shows the highest emission efficiency. Therefore, it is proposed as a promising material for molecular conjugation in clinical diagnosis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 mu m i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximate to 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pectin is a natural polymer present in plants and, as all natural polymers has biodegradation properties. Chemically, pectin is a polysaccharide composed of a linear chain of 1 -> 4 linked galacturonic acids, which is esterified with methanol at 80%. The pectin-based gel electrolytes in a transparent film form were obtained by a plasticization process with glycerol and addition of LiClO(4). The films showed good ionic conductivity results, which increased from 10(-5) S/cm for the samples with 37 wt.% of glycerol to 4.7 x 10(-4) S/cm at room temperature for the sample with 68 wt.% of glycerol. The electrochemical behaviors of the samples were studied by electrochemical impedance spectroscopy (EIS), and Nyquist graphs are showed and discussed. The obtained pectin-based samples also presented good adherence to the glass, flexibility, homogeneity (SEM) and transparency (about 70% in the vis) properties. They are good candidates to be applied as gel electrolytes in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes, for the first time, a simple and effective synthetic route for covalently bonding the chemiluminescence reagent, (4-[4-(dichloromethylsilanyl)-butyl]-4’-methyl-2,2’-bipyridyl)bis(2,2’-bipyridyl)ruthenium(II) onto silica particles. The subsequent preparation of chemically regeneratable detection cells and their preliminary analytical evaluation with both sequential injection analysis and flow injection analysis are also reported. Unoptimised analytical figures of merit were established for standard solutions of codeine and sodium oxalate with detection limits calculated from three times the standard deviation of the blank signal, of 1 × 10–8 M and 3 × 10–7 M respectively. The chemically immobilised reagent exhibited some intriguing solvent and kinetic effects, which are also briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three kinds of titania/silica pellets were prepared using the sol-gel method with surface areas of 50.4m2 g-1, 421.1m2.g-1 and 89.1m2.g-1. An annular reactor was designed and built to determine the degradation efficiency of toluene and to investigate the relationship between the adsorption and desorption-photocatalytic processes. Surface area is an important factor influencing the adsorption-photocatalytic efficiency. Higher surface areas of pellets contribute to high rates of conversion of toluene. Un-reacted toluene and reaction intermediates accumulating on their surface deactivated the titania/silica catalyst. To overcome this problem, the adsorption and regeneration process were alternated in a dual reactor system. Connecting or disconnecting the toluene feed gas enabled one reactor to adsorb toluene, while the second reactor was regenerated by photocatalysis. Using UV irradiation and titania/silica pellets with high BET surface area (421.1 m2.g-1), the alternating adsorption/regeneration processes kept the degradation efficiency of toluene at 90% after 8 hours operation. By improving the adsorption-photocatalysis efficiency, and minimising the generation and accumulation of intermediate on the surface of pellets, the method extended catalyst life and maintained a high degradation efficiency of toluene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a photochromic wool fabric has been prepared by applying a photochromic-dye hybrid silica sol-gel onto the surface of fabric. The photochromic fabric was found to have a very quick optical response. Two types of silica were used as the matrix material, and the type of silica had a small effect only on the photochromic performance, the fabric washing fastness, and water contact angle, but affected the fabric handle property considerably. The silica from a precursor containing a long alkyl chain showed very little influence on the fabric handle and better photochromic performance than that containing a phenyl group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a hybrid silica sol-gel embedded with a photochromic dye has been applied to wool fabric to form a photochromic coating. The treated wool fabrics showed very quick photochromic response. Five different silanes have been used as the silica precursor, and the resultant coating showed slight differences in photochromic performance, fabric washing fastness, and surface hydrophilicity. However, the silica type had a considerable influence on fabric handle property. The silica matrix from the silane containing a long alkyl chain had a very little influence on the fabric handle and better photochromic performance than those from other different silane precursors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the possibility of producing photochromic wool fabrics using a silica sol-gel coating method. Silicas made from sol-gel methods are uniquely suited to host photochromic dyes for developing colour-changing wool. The achieved photochromic effects have opened a new product area for fashion effects on wool textiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Montmorillonites are composed of aluminosilicate layers stacked one above the other, and the layer thickness is approximately 1 nm. In this work lithium modified montmorillonite (Li-MMT) was prepared and used as a lithium macro-anion salt in gel electrolytes. It was found that Li-MMT exhibited good compatibility with poly(ethylene glycol), DMSO and the ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIdca), and a few of novel gel electrolytes based on Li-MMT were obtained. These gel electrolytes were investigated by X-ray powder diffraction, solid state NMR, conductivity measurements and cyclic voltammetry. High conductivities up to 10− 4 to 10− 3 S/cm at room temperature were observed with these macro-anion gel electrolytes. These gel materials were promising to be used as lithium conductive electrolytes in electrochemical devices, such as lithium batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, hybrid silica prepared by a sol-gel technique and doped with a photochromic dye was used to produce photochromic coatings on fabric surfaces. The coated fabrics showed a strong photochromic effect with very fast optical response speed. Good coating adhesion was obtained on wool fabrics. The photostability of the photochromic fabrics was improved by three different processes: adding a photo stabilizer, adjusting the surface wettability and sealing off the dye-containing pores with additional silica coating. Four UV stabilizers were added separately to the photochromic silica coatings to investigate their influence on the photostability and photochromic behaviour. The addition of UV stabilizers retarded the photochromic response and reduced photochromic absorption, but increased photochromic lifetime. Among the four UV stabilizers studied, the quencher resulted in the best improvement to the photostability with minimal reduction in the photochromic absorption. Increasing the hydrophobicity of the coating, and sealing-off the dye-containing pores were also found to improve photostability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of photochromism in textiles has potential to create new opportunities to develop fancy colour-changing effects in fashionable textiles, as well as smart garments capable of protecting wearers from the effects of UV irradiation and responding to environmental changes. This book presents a coating method for achieving quick and obvious photochromic effects on wool fabrics using conventional photochromic dyes and hybrid silicas. It covers details about fabricating different types of photochromic dye-silica coatings, measuring their optical performance, assessing some physical characterisations of the coatings, and measuring the effects of the coatings on fabric performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrophilic and chemically reactive porous media were prepared by adsorbing functional polymers at the surface of sintered polyethylene membranes. Modification of the membrane was accomplished by first exposing the membrane to an oxygen glow discharge gas plasma to introduce an electrostatic charge at the membrane surfaces. Cationic polyelectrolyte polyethylenimine (PEI) was adsorbed from solution to the anionic-charged surface to form an adsorbed monolayer. The adsorption of a second anionic polyelectrolyte onto the PEI layer allows further modification of the membrane surface to form a polyelectrolyte-bilayer complex. The conformation and stability of the adsorbed monolayers and bilayers comprising the modified surface are probed as a function of the polymer structure, charge density, and solubility. Using X-ray photoelectron spectroscopy analysis, we demonstrate that the presence of the polyelectrolyte multilayers drastically increases the density and specificity of the functional groups at the surface, more than what can be achieved through the plasma modification alone. Also, using the wicking rate of deionized, distilled water through the porous membrane to gauge the interfacial energy of the modified surface, we show that the membrane wicking rate can be controlled by varying the chemistry of the adsorbing polyelectrolytes and, to a lesser extent, by adjusting the polarity or ionic strength of the polyelectrolyte solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.