993 resultados para bulk metallic glass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+ codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (similar to 750 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and up-conversion fluorescence properties in ytterbium-sensitized thulium-doped novel oxychloride bismuth-germanium glass have been studied. The structure of novel bismuth-germanium glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wave numbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the up-conversion luminescence. Intense blue and weak red emissions centered at 477 and 650 mn, corresponding to the transitions 1G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. This novel oxychloride bismuth-germanium glass with low maximum phonon energy (similar to 730 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2)-->I-4(15/2,) I-4(3/2)-->I-4(15/2), and F-4(9/2)-->I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980nm excitation are investigated. Intense blue emission centered at 476nm, corresponding to (1)G(4) -> H-3(6) transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense TM3+ up- conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The up-conversion properties of Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation were investigated. Intense blue up-conversion luminescence due to the Tm3+: (1)G(4) -> H-3(6) transition was observed in the glass-ceramics. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The up-conversion mechanism is proposed. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics and the concentrations dependence of upconversion luminescence are also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped novel oxyfluoride bismuth-germanium glass was prepared and its up-conversion fluorescence property under 975 nm excitation has been studied. Intense green and weak red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible up-conversion mechanism was also evaluated. The optimal Yb3+-Er3+ concentration ratio is found based on the direct lifetime measurements of excited levels for Er3+ ion. The structure of this novel oxyfluoride bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel oxyfluoride bismuth-germanium glass with relatively lower maximum phonon energy (similar to 731 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upconversion properties of Er3+/Yb3+ codoped tellurite glasses and glass fibers with D-shape cladding under 980 mu excitation were investigated. Intense emission bands centered at 531, 546 and 658 nm corresponding to the transitions Er3+: H-2(11/2) -> I-4(15/2) , S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. Compared with that in Er3+/Yb3+ codoped tellurite bulk glass, the upconversion luminescence becomes more efficient in the fiber geometry. The dependence of upconversion intensities on fiber geometry and possible upconversion mechanism are discussed and evaluated. The presented Er3+/Yb3+ codoped tellurite fibers with intense upconversion luminescence can be used as potential host materials for upconversion fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten-tellurite glass with molar composition of 60TeO(2)-30WO(3)-10Na(2)O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass have been discussed. The results show that the introduction Of WO3 increases significantly the glass transition temperature and the maximum phonon energy. Er3+-doped tungsten-tellurite glass exhibits high glass transition temperature (377 degrees C), large emission cross-section (0.91 x 10(-20) cm(2)) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er3+-doped waveguide amplifier application. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on transparent Ni2+-doped MgO-Al2O3-SiO2 glass ceramics with broadband infrared luminescence. Ni2+-doped MgO-Al2O3-SiO2 glass is Prepared by using the conventional method. After heat treatment at high temperature, MgAl2O4 crystallites are precipitated, and their average size is about 4.3nm. No luminescence is detected in the as-prepared glass sample, while broadband infrared luminescence centred at around 1315nm with full width at half maximum (FWHM) of about 300nm is observed from the glass ceramics. The observed infrared emission could be attributed to the T-3(2g)(F-3) -> (3)A(2g)(F-3) transition of octahedral Ni2+ ions in the MgAl2O4 crystallites of the transparent glass ceramics. The product of the fluorescence lifetime and the stimulated emission cross section is about 1.6 X 10(-24) s cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel diffractive-pumping scheme is proposed to improve the evanescent amplification using blazed fiber grating for the first time. We also investigate the cw-pumped-evanescent amplification at 1.55 mu m wavelength with the relative optical gain pumped at 1480 nm of around 2 dB based on side-polished fiber with the effective interaction length as long as 16 mm and with a heavily Er3+-doped (N-Er(3+) > 1.19 x 10(21) ions/cm(3)), low refractive index (n(1550) < 1.47) glass overlay, which has no concentration quenching (tau(f) = 9.0 ms).