999 resultados para VARIABLE DIFFUSION
Resumo:
With the advent of new video standards such as MPEG-4 part-10 and H.264/H.26L, demands for advanced video coding, particularly in the area of variable block size video motion estimation (VBSME), are increasing. In this paper, we propose a new one-dimensional (1-D) very large-scale integration architecture for full-search VBSME (FSVBSME). The VBS sum of absolute differences (SAD) computation is performed by re-using the results of smaller sub-block computations. These are distributed and combined by incorporating a shuffling mechanism within each processing element. Whereas a conventional 1-D architecture can process only one motion vector (MV), this new architecture can process up to 41 MV sub-blocks (within a macroblock) in the same number of clock cycles.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.
Resumo:
Measures of entanglement, fidelity, and purity are basic yardsticks in quantum-information processing. We propose how to implement these measures using linear devices and homodyne detectors for continuous-variable Gaussian states. In particular, the test of entanglement becomes simple with some prior knowledge that is relevant to current experiments.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fixed-node diffusion Monte Carlo computations are used to determine the ground state energy and electron density for jellium spheres with up to N = 106 electrons and background densities corresponding to the electron gas parameter 1 less than or equal to r(s)less than or equal to5.62. We analyze the density and size dependence of the surface energy, and we extrapolate our data to the thermodynamic limit. The results agree well with the predictions of density functional computations using the local density approximation. In the case of N = 20, we extend our computation to higher densities and identify a transition between atomic- and jelliumlike nodal structures occurring at the background density corresponding to r(s)=0.13. In this case the local density approximation is unable to reproduce the changes in the correlation energy due to the discontinuous transition in the ground state nodal structure. We discuss the relevance of our results for nonlocal approximations to density functional theory.
Resumo:
We report results of classical molecular-dynamics simulations of bcc and beta-Ta thin films. Thermal PVD film growth, surface roughness, argon ion bombardment, phase stability and transformation, vacancy and adatom diffusion, and thermal relaxation kinetics are discussed. Distinct differences between the two structures are observed, including a complex vacancy diffusion mechanism in beta-Ta. Embedded atom method potentials, which were fitted to bcc properties, have been used to model the Ta-Ta interactions. In order to verify the application of these potentials to the more complex beta-Ta structure, we have also performed density functional theory calculations. Results and implications of these calculations are discussed.