970 resultados para UNIFORM BOUNDEDNESS
Resumo:
In a centrifugal compressor the flow around the diffuser is collected and led to the pipe system by a spiral-shaped volute. In this study a single-stage centrifugal compressor with three different volutes is investigated. The compressorwas first equipped with the original volute, the cross-section of which was a combination of a rectangle and semi-circle. Next a new volute with a fully circular cross-section was designed and manufactured. Finally, the circular volute wasmodified by rounding the tongue and smoothing the tongue area. The overall performance of the compressor as well as the static pressure distribution after the impeller and on the volute surface were measured. The flow entering the volute was measured using a three-hole Cobra-probe, and flow visualisations were carriedout in the exit cone of the volute. In addition, the radial force acting on theimpeller was measured using magnetic bearings. The complete compressor with thecircular volute (inlet pipe, full impeller, diffuser, volute and outlet pipe) was also modelled using computational fluid dynamics (CFD). A fully 3-D viscous flow was solved using a Navier-Stokes solver, Finflo, developed at Helsinki University of Technology. Chien's k-e model was used to take account of the turbulence. The differences observed in the performance of the different volutes were quite small. The biggest differences were at low speeds and high volume flows,i.e. when the flow entered the volute most radially. In this operating regime the efficiency of the compressor with the modified circular volute was about two percentage points higher than with the other volutes. Also, according to the Cobra-probe measurements and flow visualisations, the modified circular volute performed better than the other volutes in this operating area. The circumferential static pressure distribution in the volute showed increases at low flow, constant distribution at the design flow and decrease at high flow. The non-uniform static pressure distribution of the volute was transmitted backwards across the vaneless diffuser and observed at the impeller exit. At low volume flow a strong two-wave pattern developed into the static pressure distribution at the impeller exit due to the response of the impeller to the non-uniformity of pressure. The radial force of the impeller was the greatest at the choke limit, the smallest atthe design flow, and moderate at low flow. At low flow the force increase was quite mild, whereas the increase at high flow was rapid. Thus, the non-uniformityof pressure and the force related to it are strong especially at high flow. Theforce caused by the modified circular volute was weaker at choke and more symmetric as a function of the volume flow than the force caused by the other volutes.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous driving of the horizontal plate at the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height and rotational speed of the shearing plate are measured. Moreover, local stress fluctuations are measured in a medium made of steel spheres 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity in intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of spherical steel balls. The shearing granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus using a piezoelectric sensor. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations are then investigated by different means through monodisperse and bidisperse packings. Another important feature of rapid granular shear flows is the formation of ordered structures upon shearing. It requires a certain range for the amount of granular material (uniform size distribution) loaded in the system in order to obtain stable flows. This is studied more deeply in this thesis. The results of the current work bring some new insights into deformation dynamics and intermittency in rapid granular shear flows. The experimental apparatus is modified in comparison to earlier investigations. The measurements produce data for various quantities continuously sampled from the start of shearing to the end. Static failure and dynamic shearing ofa granular medium is investigated. The results of this work revealed some important features of failure dynamics and structure formation in the system. Furthermore, some computer simulations are performed in a 2D annulus to examine the nature of kinetic energy dissipation. It is found that turbulent flow models can statistically represent rapid granular flows with high accuracy. In addition to academic outcomes and scientific publications our results have a number of technological applications associated with grinding, mining and massive grain storages.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
El objetivo de este trabajo fue el de evaluar la deposición transversal de caldo de las boquillas pulverizadoras de doble abanico TTJ60-11004 y TTJ60-11002 en distintas condiciones operacionales. Se utilizaron 5 muestras de cada boquilla pulverizadora siendo considerada cada unidad, una repetición. La distribución de caldo fue evaluada por medio de una mesa de evaluación de distribución construida de acuerdo con la norma ISO 56821. Se evaluó el perfil de distribución individual, la distribución volumétrica simulada de la superposición de los chorros por medio del coeficiente de variación (CV%) de los volúmenes colectados, el caudal y el ángulo de abertura de los chorros. Las condiciones operacionales fueron: presión de trabajo de 200, 300 y 400 Kpa, altura de 30, 40 y 50 cm en relación al blanco y espaciamiento entre boquillas simulados en Software (Microsoft Excel) entre 45 y 100 cm. Las boquillas presentaron perfil individual descontinuo con la mayor deposición de líquido en la región central y reducción del volumen gradual en dirección a las extremidades. El aumento de la presión promovió alargamiento del perfil y de la franja de aplicación. Las boquillas proporcionaron perfil uniforme que dependió del espaciamiento entre las boquillas, con valores menores con reducción en el espaciamiento y en presiones mayores. El caudal y el ángulo del chorro aumentaron con el incremento en la presión.
Resumo:
Objetivou-se com este trabalho avaliar a distribuição de líquido da ponta de pulverização com indução de ar e jato excêntrico AIUB 8502 sob diferentes condições operacionais. Foram avaliados perfil individual, vazão, ângulo de abertura do jato, faixa de aplicação e distribuição volumétrica simulada de duas pontas AIUB 8502 nas pressões de trabalho de 200, 300, 400 e 500 kPa, altura de 30, 40 e 50 cm em relação ao alvo e espaçamento entre pontas de 30 a 100 cm. Todas as análises foram realizadas seguindo a norma ISSO 5682-1, com algumas adaptações. A ponta apresentou distribuição de líquido excêntrica com um lado descontínuo e extremidade oposta excêntrica, com queda abrupta do volume de líquido. À medida que se aumentou a altura da barra e a pressão de trabalho, alongou-se o perfil do jato. O maior número de configurações uniformes foi obtido na altura de 50 cm, decrescendo nas alturas de 40 e 30 cm. A vazão e o ângulo do jato excêntrico aumentaram com o incremento na pressão, não havendo diferença entre o ângulo do jato descontínuo e o total entre as pressões de 400 e 500 kPa e de 200 e 300 kPa.
Resumo:
Objetivou-se neste trabalho avaliar a distribuição volumétrica e o espectro de gotas das pontas de pulverização de baixa deriva TTI110015, AI110015 e AVI11001 sob diferentes condições operacionais. A distribuição volumétrica foi determinada em bancada de ensaios padronizada analisando o coeficiente de variação (CV%) de uma barra simulada em computador, utilizando pressões de 200, 300 e 400 kPa, altura de 30, 40 e 50 cm em relação à bancada e espaçamento entre pontas de 40 a 100 cm. O espectro de gotas foi produzido utilizando-se apenas água como calda em um analisador de partículas em meio aquoso, nas pressões de 200, 300 e 400 kPa. Foram avaliados o DMV, a porcentagem de gotas com diâmetro inferior a 100 µm (%100 µm) e a amplitude relativa (AR). As pontas proporcionaram perfil descontínuo nas pressões de 300 e 400 kPa e uniforme a 200 kPa. Na pressão de 200 kPa, as pontas foram adequadas apenas para aplicação em faixa, e a 300 e 400 kPa, apenas para área total. Ocorreu menor CV (abaixo de 7%) com a maior pressão de trabalho e menor espaçamento entre pontas. À medida que se aumentou a pressão de trabalho, reduziu-se o DMV. As pontas TTI110015 e AI110015 em todas as pressões e a ponta AVI11001 na pressão de 200 kPa produziram gotas extremamente grossas e gotas grossas nas pressões de 300 e 400 kPa apenas para a ponta AVI11001. As pontas proporcionaram baixos valores de amplitude relativa (AR) e gotas de tamanho uniforme, bem como produziram baixa porcentagem de gotas menores que 100 µm, principalmente TTI110015 e AI110015, com menor risco de deriva.
Resumo:
Se estudió el ciclo biológico de Dryomia lichtensteini (F. Löw) en una población de encinas de Lleida y se describieron los diferentes estados de desarrollo del díptero. Los adultos aparecieron en abril y volaron hasta mediados de mayo. Las hembras realizaron la puesta en los brotes jóvenes del árbol. Cuando aparecieron las hojas nuevas, las larvas nacidas a finales de mayo produjeron picadas para alimentarse. Como respuesta, el árbol produjo agallas uniloculares de forma ovoide en el envés de las hojas. Las larvas puparon dentro de las agallas de marzo a mayo del año siguiente, y en abril aparecieron los nuevos adultos mediante la apertura de las agallas por el haz de la hoja mediante una estrecha fisura. Se observó una única generación al año. La distribución de las agallas no siguió un patrón concreto y se localizaron en toda la copa, con mayor abundancia en el estrato inferior de la misma.
Resumo:
BACKGROUND: No previous studies have explored how closely women follow their psychotropic drug regimens during pregnancy. This study aimed to explore patterns of and factors associated with low adherence to psychotropic medication during pregnancy. METHODS: Multinational web-based study was performed in 18 countries in Europe, North America, and Australia. Uniform data collection was ensured via an electronic questionnaire. Pregnant women were eligible to participate. Adherence was measured via the 8-item Morisky Medication Adherence Scale (MMAS-8). The Beliefs about Prescribed Medicines Questionnaire (BMQ-specific), the Edinburgh Postnatal Depression Scale (EPDS), and a numeric rating scale were utilized to measure women's beliefs, depressive symptoms, and antidepressant risk perception, respectively. Participants reporting use of psychotropic medication during pregnancy (n = 160) were included in the analysis. RESULTS: On the basis of the MMAS-8, 78 of 160 women (48.8%, 95% CI: 41.1-56.4%) demonstrated low adherence during pregnancy. The rates of low adherence were 51.3% for medication for anxiety, 47.2% for depression, and 42.9% for other psychiatric disorders. Smoking during pregnancy, elevated antidepressant risk perception (risk≥6), and depressive symptoms were associated with a significant 3.9-, 2.3-, and 2.5-fold increased likelihood of low medication adherence, respectively. Women on psychotropic polytherapy were less likely to demonstrate low adherence. The belief that the benefit of pharmacotherapy outweighed the risks positively correlated (r = .282) with higher medication adherence. CONCLUSIONS: Approximately one of two pregnant women using psychotropic medication demonstrated low adherence in pregnancy. Life-style factors, risk perception, depressive symptoms, and individual beliefs are important factors related to adherence to psychotropic medication in pregnancy.
Resumo:
Familial Mediterranean fever (FMF) is a disease of early onset which can lead to significant morbidity. In 2012, Single Hub and Access point for pediatric Rheumatology in Europe (SHARE) was launched with the aim of optimising and disseminating diagnostic and management regimens for children and young adults with rheumatic diseases. The objective was to establish recommendations for FMF focusing on provision of diagnostic tools for inexperienced clinicians particularly regarding interpretation of MEFV mutations. Evidence-based recommendations were developed using the European League against Rheumatism standard operating procedure. An expert committee of paediatric rheumatologists defined search terms for the systematic literature review. Two independent experts scored articles for validity and level of evidence. Recommendations derived from the literature were evaluated by an online survey and statements with less than 80% agreement were reformulated. Subsequently, all recommendations were discussed at a consensus meeting using the nominal group technique and were accepted if more than 80% agreement was reached. The literature search yielded 3386 articles, of which 25 were considered relevant and scored for validity and level of evidence. In total, 17 articles were scored valid and used to formulate the recommendations. Eight recommendations were accepted with 100% agreement after the consensus meeting. Topics covered were clinical versus genetic diagnosis of FMF, genotype-phenotype correlation, genotype-age at onset correlation, silent carriers and risk of amyloid A (AA) amyloidosis, and role of the specialist in FMF diagnosis. The SHARE initiative provides recommendations for diagnosing FMF aimed at facilitating improved and uniform care throughout Europe.