1000 resultados para TEMPERATURE PHOTOLUMINESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anomalous behaviour of conductivity below 4 K in polypyrrole can be attributed to the possibility of tunnel transport in disordered polaronic systems. The deviation from T-1/3 and T-1/4, depending on disorder, can be due to the onset of tunnel transport between localised states, apart from the hopping contribution to the conductivity. In intermediately and lightly doped polypyrrole films, the tunnel contribution to conductivity increases with decreasing temperature in a narrow temperature range, which is a feature of the presence of polarons taking part in the conduction mechanisms of disordered systems with strong electron-phonon coupling. The transition from hopping to tunneling dominated process can be observed either by the increase in conductivity in some cases or by the saturation of conductivity, depending crucially on the extent of disorder in the sample. In both cases the transition temperature is seen to increase with the reduction in the number of localised states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of glasses were prepared, xNa2O, yZnO, 100 - x - yB2O3 and 30 - xNa2O, xZnO, 70B2O3 (mol%). The temperature dependence of the direct current resistivity was measured from room temperature to about 700 K and in both series of glasses we observed a simple Arrhenius type of temperature dependence. However, the resistivity of the binary alkali glass increased steeply by as much as two orders of magnitude with the addition of even a small quantity of ZnO and remained virtually unaffected by further addition of ZnO. The resistivity decreases gradually with increasing pressure in Na2O-B2O3 but increases with increasing pressure with the addition of ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal structures of extraordinarily luminescent semiconductor nanoparticles are probed with photoelectron spectroscopy, establishing a gradient alloy structure as an essential ingredient for the observed phenomenon. Comparative photoluminescence lifetime measurements provide direct evidence for a minimization of nonradiative decay channels because of the removal of interfacial defects due to a progressive change in the lattice parameters in such graded structures, exhibiting a nearly single exponential decay Quantum mechanical, calculations suggest a differential extent of spatial collapse of the electron and the hole wave functions in a way that helps to enhance the photoluminescence efficiency, while at the same time increasing the lifetime of the excited state, as observed in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The criterion for the design of a temperature-compensated reference electrode for non-isothermal galvanic sensors is deduced from the basic flux equations of irreversible thermodynamics. It is shown that when the Seebeck coefficient of the non-isothermal cell using a solid oxygen ion-conducting electrolyte under pure oxygen is equal to the relative partial molar entropy of oxygen in the reference electrode divided by 4F, then the EMF of the non-isothermal cell is the same as that of an isothermal cell with the same electrodes operating at the higher temperature. By measuring the temperature of the melt alone and the EMF of the non-isothermal galvanic sensor, one can derive the chemical potential or the concentration of oxygen in a corrosive medium. The theory is experimentally checked using sensors for oxygen in liquid copper constructed with various metal+oxide electrodes and fully stabilised (CaO)ZrO2 as the electrolyte. To satisfy the exact condition for temperature compensation it is often necessary to have the metal or oxide as a solid solution in the reference electrode.