973 resultados para Species availability
Resumo:
The multi-annual climatic event, El Niño Southern Oscillation (ENSO) is an important factor in the population dynamics of coastal marine species in the Galápagos. The Galápagos sea lion, Zalophus wollebaeki, suffered an apparent population decline of about 50%, considering both mortality and movements away from study sites during the 1997-98 El Niño. This change was in part due to changes in the availability of sardines of the Family Clupeidae, its main prey. These declines resulted partly from elevated mortality (35%) in sea lion colonies, particularly among pups, juveniles (< 1 year old), and dominant males and as a result of movements of adults elsewhere (15%), presumably where there were alternative prey and better environmental conditions.
Resumo:
Many highly exploited ecosystems are managed on the basis of single-species demographic information. This management approach can exacerbate tensions among stakeholders with competing interests who in turn rely on data with notoriously high variance. In this case study, an application of diet and dive survey data was used to describe the prey preference of lingcod (Ophiodon elongatus) in a predictive framework on nearshore reefs off Oregon. The lingcod is a large, fast-growing generalist predator of invertebrates and fishes. In response to concerns that lingcod may significantly reduce diminished populations of rockfishes (Sebastes spp.), the diets of 375 lingcod on nearshore reefs along the Oregon Coast were compared with estimates of relative prey availability from dive surveys. In contrast to the transient pelagic fishes that comprised 46% of lingcod diet by number, rockfishes comprised at most 4.7% of prey items. Rockfishes were the most abundant potential prey observed in dive surveys, yet they were the least preferred. Ecosystem-based fisheries management (EBFM) requires information about primary trophic relationships, as well as relative abundance and distribution data for multiple species. This study shows that, at a minimum, predation relative to prey availability must be considered before predator effects can be understood in a management context.
Resumo:
Crassostrea (Sacco, 1897) é o gênero mais importante do mundo de ostras de cultivo e consiste de 34 espécies distribuídas pelas regiões tropicais e temperadas do globo. C. gasar e C. rhizophorae são as duas espécies nativas que estão distribuídas ao longo de toda a costa do Brasil até o Caribe. C. gasar também ocorre na costa da Africa. Ainda que sua distribuição seja extensa e com disponibilidade abundante, o cultivo de ostras nativas no Brasil ainda é incipiente e a delimitação correta dos estoques mantém-se incerta. O sucesso do desenvolvimento da malacocultura, que é recomendada internacionalmente como forma sustentável de aquicultura, depende da resolução desses problemas. Assim, com o objetivo de determinar geneticamente seus estoques no Atlântico como também estimar sua história demográfica, dois diferentes marcadores moleculares foram empregados: sequências de DNA da região controle mitocondrial e loci de microssatélites espécie-especifícos, desenvolvidos no presente estudo. Foram sequenciados fragmentos da região controle de um total de 930 indivíduos de C. gasar e C. rhizophorae coletados em 32 localidades que incluíram o Caribe, a Guiana Francesa, a costa brasileira e a África. Também foram realizadas genotipagens de 1178 indivíduos, e ambas as espécies, com 9 e 11 loci de microssatélites para C. gasar e C. rhizophorae, respectivamente. Os dados genéticos foram analisados através de diferentes abordagens (índices de estruturação (FST) e de (Jost D), análise molecular de variância (AMOVA), análise espacial molecular de variância (SAMOVA), Bayesian Skyline Plots (BSP), análise fatorial de correspondência (AFC) e análise de atribuição Bayesiana (STRUCTURE)). Os resultados indicaram um padrão geral de estruturação, onde dois diferentes estoques foram detectados para ambas as espécies: grupos do norte e do sul, onde o Rio de Janeiro seria a região limitante entre os dois estoques. Os maiores valores dos índices de estruturação foram encontrados para C. gasar, indicando que esta espécie estaria mais estruturada do que C. rhizophorae. As análises demográficas indicaram uma provável expansão das populações durante o ultimo período glacial e uma possível origem americana das populações africanas. Todos os resultados sugeriram a existência de uma barreira geográfica próxima ao Rio de Janeiro, que poderia ser a cadeia de Vitória-Trindade e o fenômeno de ressurgência que ocorre em Cabo Frio (RJ). Esses resultados serão de grande utilidade para estabelecer critérios para seleção de sementes para cultivo ao longo da costa do Brasil que permitirá o manejo adequado dos estoques ostreícolas, prevenindo seu desaparecimento como já ocorrido em outros recifes no mundo.
Resumo:
The small-spotted catshark (Scyliorhinus canicula) (Linnaeus, 1758) and the longnose spurdog (Squalus blainville) (Risso, 1826) are two species occurring in the European and western African continental shelves with a wide geographical distribution. In this study, the diet of S. blainville and S. canicula off the Portuguese western Atlantic coast was investigated in 2006 by collecting monthly samples of these two species from local fishing vessels. In the stomachs of both species, crustaceans and teleosts were the dominant prey items, and molluscs, polychaetes, echinoderms, and sipunculids were found in lower abundance. In S. canicula, urochordate and chondrichthyan species were also observed in stomachs and were classified as accidental prey items. Scyliorhinus canicula consumed a broader group of prey items than did S. blainville. A significant diet overlap was observed, despite both species occupying different depth ranges over the continental shelf. Scyliorhinus canicula exhibited a consistency in diet composition among seasons, sexes, and maturity stages. Nonetheless, for both adults and juveniles, an increase in relative abundance of teleosts in the diet was observed in the spring and summer. This study provides evidence of the importance of S. canicula and S. blainville as benthic and pelagic predators along the western Atlantic coast.
Resumo:
From 2001 to 2006, 71 pop-up satellite archival tags (PSATs) were deployed on five species of pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxyrinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark [C. longimanus]; and bigeye thresher [Alopias superciliosus]) in the central Pacific Ocean to determine species-specific movement patterns and survival rates after release from longline fishing gear. Only a single postrelease mortality could be unequivocally documented: a male blue shark which succumbed seven days after release. Meta-analysis of published reports and the current study (n=78 reporting PSATs) indicated that the summary effect of postrelease mortality for blue sharks was 15% (95% CI, 8.5–25.1%) and suggested that catch-and-release in longline fisheries can be a viable management tool to protect parental biomass in shark populations. Pelagic sharks displayed species-specific depth and temperature ranges, although with significant individual temporal and spatial variability in vertical movement patterns, which were also punctuated by stochastic events (e.g., El Niño-Southern Oscillation). Pelagic species can be separated into three broad groups based on daytime temperature preferences by using the unweighted pair-group method with arithmetic averaging clustering on a Kolmogorov-Smirnov Dmax distance matrix: 1) epipelagic species (silky and oceanic whitetip sharks), which spent >95% of their time at temperatures within 2°C of sea surface temperature; 2) mesopelagic-I species (blue sharks and shortfin makos, which spent 95% of their time at temperatures from 9.7° to 26.9°C and from 9.4° to 25.0°C, respectively; and 3) mesopelagic-II species (bigeye threshers), which spent 95% of their time at temperatures from 6.7° to 21.2°C. Distinct thermal niche partitioning based on body size and latitude was also evident within epipelagic species.
Resumo:
Rockpools on a tropical f lat reef off the southeastern coast of Brazil were sampled to determine the influence of pool morphometry and water characteristics on fish community structure. The pool closest to the inner fringe of the reef had lower salinity and higher temperature due to inflow of groundwater. The other pools varied only with respect to their morphometric characteristics, algal cover, and bottom composition. Species with a strong affinity for estuarine- like waters characterized the pool closest to the beach and distinguished its fish community from that of the other pools. Instead of being strongly structured by the physicochemical setting and position in the reef, fish communities of the other pools were determined by behavioral preferences and intra- and interspecific interactions. Differences in community structure were related to pool size (the larger sizes permitting the permanency of schooling species), to algal cover (which allowed camouflage for large predatory species), to bottom composition (which provided substrate for turf flora available to territorial herbivores), and to ecological effects (e.g., competition, territoriality, and predation). Although distribution patterns of tidepool fishes have previously been related to the availability of niches, independent of pool position in the reef, our results show synergistic interactions between water properties, presence or absence of niches, and ecological relationships in structuring tidepool fish communities.
Resumo:
A stereo-video baited camera system (BotCam) has been developed as a fishery-independent tool to monitor and study deepwater fish species and their habitat. During testing, BotCam was deployed primarily in water depths between 100 and 300 m for an assessment of its use in monitoring and studying Hawaiian bottomfish species. Details of the video analyses and data from the pilot study with BotCam in Hawai`i are presented. Multibeam bathymetry and backscatter data were used to delineate bottomfish habitat strata, and a stratified random sampling design was used for BotCam deployment locations. Video data were analyzed to assess relative fish abundance and to measure f ish size composition. Results corroborate published depth ranges and zones of the target species, as well as their habitat preferences. The results indicate that BotCam is a promising tool for monitoring and studying demersal fish populations associated with deepwater habitats to a depth of 300 m, at mesohabitat scales. BotCam is a flexible, nonextractive, and economical means to better understand deepwater ecosystems and improve science-based ecosystem approaches to management.