994 resultados para SIGHT VELOCITY DISTRIBUTIONS
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.
Resumo:
En rivière à lit de graviers, le transport des sédiments en charge de fond est un processus intermittent qui dépend de plusieurs variables du système fluvial dont la prédiction est encore aujourd’hui inexacte. Les modèles disponibles pour prédire le transport par charriage utilisent des variables d’écoulement moyen et la turbulence n’est généralement pas considérée malgré que les tourbillons contenus dans les écoulements possèdent une quantité d’énergie importante. L’utilisation de nouvelles approches pour étudier la problématique du transport par charriage pourrait nous permettre d’améliorer notre connaissance de ce processus déterminant en rivière alluviale. Dans ce mémoire, nous documentons ces composantes de la dynamique fluviale dans un cours d’eau graveleux en période de crue. Les objectifs du projet de recherche sont : 1) d’examiner l’effet du débit sur les variables turbulentes et les caractéristiques des structures turbulentes cohérentes, 2) d’investiguer l’effet du débit sur les caractéristiques des événements de transport de sédiments individuels détectés à l’aide d’un nouvel algorithme développé et testé et 3) de relier les caractéristiques de l’écoulement turbulent aux événements de transport de sédiments individuels. Les données de turbulence montrent qu’à haut niveau d’eau, l’écoulement décéléré est peu cohérent et a une turbulence plus isotrope où les structures turbulentes cohérentes sont de courte durée. Ces observations se distinguent de celles faites à faible niveau d’eau, en écoulement accéléré, où la plus grande cohérence de l’écoulement correspond à ce qui est généralement observé dans les écoulements uniformes en rivières graveleuses. Les distributions de fréquence des variables associées aux événements de transport individuel (intensité de transport moyenne, durée d’événement et intervalle entre événements successifs) ont des formes différentes pour chaque intensité de crue. À haut niveau d’eau, le transport est moins intermittent qu’à faible débit où les événements rares caractérisent davantage les distributions. L’accélération de l’écoulement à petite échelle de temps joue un rôle positif sur le transport, mais surtout lorsque la magnitude de la crue mobilisatrice est en dessous du niveau plein bord. Les résultats de l’étude montrent que les caractéristiques de la turbulence ainsi que les liens complexes entre l’écoulement et le transport par charriage sont fonction du débit.
Resumo:
Thèse réalisée en cotutelle avec l'Université catholique de Louvain.
Resumo:
La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution.
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Some Characterization problems associated with the Bivariate Exponential and Geometric Distributions
Resumo:
A bivariate semi-Pareto distribution is introduced and characterized using geometric minimization. Autoregressive minification models for bivariate random vectors with bivariate semi-Pareto and bivariate Pareto distributions are also discussed. Multivariate generalizations of the distributions and the processes are briefly indicated.
Resumo:
For the discrete-time quadratic map xt+1=4xt(1-xt) the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the t to infinity limit all of them approach the invariant density for the map.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
The present study gave emphasis on characterizing continuous probability distributions and its weighted versions in univariate set up. Therefore a possible work in this direction is to study the properties of weighted distributions for truncated random variables in discrete set up. The problem of extending the measures into higher dimensions as well as its weighted versions is yet to be examined. As the present study focused attention to length-biased models, the problem of studying the properties of weighted models with various other weight functions and their functional relationships is yet to be examined.