986 resultados para SEQUENCE TYPES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the use of sight vocabulary drills, experience and sequence stories, pre-primers, basal readers and text books as part of a reading curriculum for hearing-impaired children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a review of educational achievement tests and their suitability for hearing impaired children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares conventional auditory brainstem response tests (ABRs) and Maximum Length Sequence auditory brainstem response tests (MLS ABRs). The results found that the faster MLS ABRs could prove an accurate screening tool for auditory sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.