992 resultados para SEPARATED SYSTEMS
Resumo:
Adjustable speed induction generators, especially the Doubly-Fed Induction Generators (DFIG) are becoming increasingly popular due to its various advantages over fixed speed generator systems. A DFIG in a wind turbine has ability to generate maximum power with varying rotational speed, ability to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc, DFIG have become very popular in large wind power conversion systems. This chapter presents an extensive literature survey over the past 25 years on the different aspects of DFIG. Application of H8 Controller for enhanced DFIG-WT performance in terms of robust stability and reference tracking to reduce mechanical stress and vibrations is also demonstrated in the chapter.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Despite tough economic times, the uptake of photovoltaic (PV) technology has seen tremendous growth over the past decade. More than 21 GW of rooftop PV systems were installed globally in the year 2012 alone. This is fueled by various incentives offered by policy makers around the world with a goal of enhancing renewable energy integration and reducing the dependence on fossil fuels. For instance, the goal of achieving 20% energy consumption from renewable resources by 2020 has been unanimously accepted by numerous countries in Europe, North America, and Australia. Uptake of PVs by residential and small businesses has been augmented by generous rebates offered by government on installations and on the amount of energy injected into the grid. Furthermore, the global market outlook report published by EPIA predicts that the rooftop PV installations will continue to grow for the foreseeable future.
Resumo:
User profiling is the process of constructing user models which represent personal characteristics and preferences of customers. User profiles play a central role in many recommender systems. Recommender systems recommend items to users based on user profiles, in which the items can be any objects which the users are interested in, such as documents, web pages, books, movies, etc. In recent years, multidimensional data are getting more and more attention for creating better recommender systems from both academia and industry. Additional metadata provides algorithms with more details for better understanding the interactions between users and items. However, most of the existing user/item profiling techniques for multidimensional data analyze data through splitting the multidimensional relations, which causes information loss of the multidimensionality. In this paper, we propose a user profiling approach using a tensor reduction algorithm, which we will show is based on a Tucker2 model. The proposed profiling approach incorporates latent interactions between all dimensions into user profiles, which significantly benefits the quality of neighborhood formation. We further propose to integrate the profiling approach into neighborhoodbased collaborative filtering recommender algorithms. Experimental results show significant improvements in terms of recommendation accuracy.
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
Focus groups are a popular qualitative research method for information systems researchers. However, compared with the abundance of research articles and handbooks on planning and conducting focus groups, surprisingly, there is little research on how to analyse focus group data. Moreover, those few articles that specifically address focus group analysis are all in fields other than information systems, and offer little specific guidance for information systems researchers. Further, even the studies that exist in other fields do not provide a systematic and integrated procedure to analyse both focus group ‘content’ and ‘interaction’ data. As the focus group is a valuable method to answer the research questions of many IS studies (in the business, government and society contexts), we believe that more attention should be paid to this method in the IS research. This paper offers a systematic and integrated procedure for qualitative focus group data analysis in information systems research.
Resumo:
This project examined the potential for historical mapping of land resources to be upgraded to meet current requirements for natural resource management. The methods of spatial disaggregation used to improve the scale of mapping were novel and provide a method to rapidly improve existing information. The thesis investigated the potential to use digital soil mapping techniques and the multi-scale identification of areas within historical land systems mapping to provide enhanced information to support modern natural resource management needs. This was undertaken in the Burnett Catchment of South-East Queensland.
Resumo:
This thesis introduces a method of applying Bayesian Networks to combine information from a range of data sources for effective decision support systems. It develops a set of techniques in development, validation, visualisation, and application of Complex Systems models, with a working demonstration in an Australian airport environment. The methods presented here have provided a modelling approach that produces highly flexible, informative and applicable interpretations of a system's behaviour under uncertain conditions. These end-to-end techniques are applied to the development of model based dashboards to support operators and decision makers in the multi-stakeholder airport environment. They provide highly flexible and informative interpretations and confidence in these interpretations of a system's behaviour under uncertain conditions.
Resumo:
By referring to Niklas Luhmann's theory of self-referential systems, Aldo Mascareño (2008, submitted for publication) gives an account of system-environment interrelatedness, explaining how social and individual constitute each other through the process of communication and co-creation of meanings. Two possible extensions to his account are discussed. Firstly, auto-communication within the system that happens without any external reference needs to be taken into account while describing the existence and constant re-creation of psychic systems. Secondly, in order for the system and environment or two systems to communicate, an imagined and temporary intersubjectivity between the two needs to be assumed.
Resumo:
This paper presents a trajectory-tracking control strategy for a class of mechanical systems in Hamiltonian form. The class is characterised by a simplectic interconnection arising from the use of generalised coordinates and full actuation. The tracking error dynamic is modelled as a port-Hamiltonian Systems (PHS). The control action is designed to take the error dynamics into a desired closed-loop PHS characterised by a constant mass matrix and a potential energy with a minimum at the origin. A transformation of the momentum and a feedback control is exploited to obtain a constant generalised mass matrix in closed loop. The stability of the close-loop system is shown using the close-loop Hamiltonian as a Lyapunov function. The paper also considers the addition of integral action to design a robust controller that ensures tracking in spite of disturbances. As a case study, the proposed control design methodology is applied to a fully actuated robotic manipulator.
Resumo:
Access to nutritious, safe and culturally appropriate food is a basic human right (Mechlem, 2004). Food sovereignty defines this right through the empowerment of the people to redefine food and agricultural systems, and through ecologically sustainable production methods. At the heart of the food sovereignty movement are the interests of producers, distributors and consumers, rather than the interests of markets and corporations, which dominate the current globalized food system (Hinrichs, 2003). Food sovereignty challenges designers to enable people to innovate the food system. We are yet to develop economically viable solutions for scaling projects and providing citizens, governments and business with tools to develop and promote projects to innovate food systems and promote food sovereignty (Meroni, 2011; Murray, Caulier-Grice and Mulgan, 2010). This article examines how a design-led approach to innovation can assist in the development of new business models and ventures for local food systems: this is presented through an emerging field of research ‘Design-Led Food Communities’. Design-Led Food Communities enables citizens, governments and business to innovate local food projects through the application of design. This article reports on the case study of the Docklands Food Hub Project in Melbourne, Australia. Preliminary findings demonstrate valued outcomes, but also a deficiency in the design process to generate food solutions collaboratively between government, business and citizens.
Resumo:
The primary purpose of this paper is to overview a selection of advanced water treatment technology systems that are suited for application in towns and settlements in remote and very remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. This recognises that sanitation and water treatment are inextricably linked and both are needed to reduce risks to environment and population health from contaminated water sources. For both Australia and Sri Lanka only a small fraction of the settlements in rural and remote regions are connected to water treatment facilities and town water supplies. In Australia’s remote/very remote regions raw water is drawn from underground sources and rainwater capture. Most settlements in rural Sri Lanka rely on rivers, reservoirs, wells, springs or carted water. Furthermore, Sri Lanka has more than 25,000 hand pumped tube wells which saved the communities during recent droughts. Decentralised water supply systems offer the opportunity to provide safe drinking water to these remote/very remote and rural regions where centralised systems are not feasible due to socio-cultural, economic, political, technological reasons. These systems reduce health risks from contaminated water supplies. In remote areas centralized systems fail due to low population density and less affordability. Globally, a new generation of advanced water treatment technologies are positioned to make a major impact on the provision of safe potable water in remote/very remote regions in Australia and rural regions in Sri Lanka. Some of these systems were developed for higher income countries. However, with careful selection and further research they can be tailored to match local socio-economic conditions and technical capacity. As such, they can equally be used to provide decentralised water supply in communities in developed and developing countries such as Australia and Sri Lanka.
Resumo:
It is becoming increasingly popular to consider species interactions when managing ecological foodwebs. Such an approach is useful in determining how management can affect multiple species, with either beneficial or detrimental consequences. Identifying such actions is particularly valuable in the context of conservation decision making as funding is severely limited. This paper outlines a new approach that simplifies the resource allocation problem in a two species system for a range of species interactions: independent, mutualism, predator-prey, and competitive exclusion. We assume that both species are endangered and we do not account for decisions over time. We find that optimal funding allocation is to the conservation of the species with the highest marginal gain in expected probability of survival and that, across all except mutualist interaction types, optimal conservation funding allocation differs between species. Loss in efficiency from ignoring species interactions was most severe in predator-prey systems. The funding problem we address, where an ecosystem includes multiple threatened species, will only become more commonplace as increasing numbers of species worldwide become threatened. © 2011 Elsevier B.V.
Resumo:
The DeLone and McLean (D&M) model (2003) has been broadly used and generally recognised as a useful model for gauging the success of IS implementations. However, it is not without limitations. In this study, we evaluate a model that extends the D&M model and attempts to address some of it slimitations by providing a more complete measurement model of systems success. To that end, we augment the D&M (2003) model and include three variables: business value, institutional trust, and future readiness. We propose that the addition of these variables allows systems success to be assessed at both the systems level and the business level. Consequently, we develop a measurement model rather than a structural or predictive model of systems success.