974 resultados para Receptors, Interleukin-2 -- genetics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Peroxisome proliferator-activated receptors alpha, beta/delta and gamma are members of the nuclear receptor superfamily. They mediate the effects of fatty acids and their derivatives at the transcriptional level, and are considered to be lipid sensors that participate in the regulation of energy homeostasis. Compared with the alpha and gamma peroxisome proliferator-activated receptor isotypes, peroxisome proliferator-activated receptor beta functions have long remained an enigma. In this review, we focus on emerging knowledge about peroxisome proliferator-activated receptor beta activation and roles. RECENT FINDINGS: We review recent data that suggest key roles in basic cell functions, such as proliferation, differentiation and survival, and in embryonic development and lipid metabolism in peripheral tissues. SUMMARY: The newly unveiled roles of peroxisome proliferator-activated receptor beta in important basic cell functions certainly justify a further exploration of its potential as a therapeutic target in pathologies such as metabolic syndrome X or skin diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas interactions between the TCRalpha beta and self MHC:peptide complexes are clearly required for positive selection of mature CD4(+) and CD8(+) T cells during intrathymic development, the role of self or foreign ligands in maintaining the peripheral T cell repertoire is still controversial. In this report we have utilized keratin 14-beta2-microglobulin (K14-beta2m)-transgenic mice expressing beta2m-associated ligands exclusively on thymic cortical epithelial cells to address the possible influence of TCR:ligand interactions in peripheral CD8(+) T cell homeostasis. Our data indicate that CD8(+) T cells in peripheral lymphoid tissues are present in normal numbers in the absence of self MHC class I:peptide ligands. Surprisingly, however, steady state homeostasis of CD8(+) T cells in the intestinal epithelium is severely affected by the absence of beta2m-associated ligands. Indeed TCRalpha beta(+) IEL subsets expressing CD8alpha beta or CD8alpha alpha are both dramatically reduced in K14-beta2m mice, suggesting that the development, survival or expansion of CD8(+) IEL depends upon interaction of the TCR with MHC class I:peptide or other beta2m-associated ligands elsewhere than on thymic cortical epithelium. Collectively, our data reveal an unexpected difference in the regulation of CD8(+) T cell homeostasis by beta2m-associated ligands in the intestine as compared to peripheral lymphoid organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant Valpha14 (Valpha14i) NKT cells are a murine CD1d-dependent regulatory T cell subset characterized by a Valpha14-Jalpha18 rearrangement and expression of mostly Vbeta8.2 and Vbeta7. Whereas the TCR Vbeta domain influences the binding avidity of the Valpha14i TCR for CD1d-alpha-galactosylceramide complexes, with Vbeta8.2 conferring higher avidity binding than Vbeta7, a possible impact of the TCR Vbeta domain on Valpha14i NKT cell selection by endogenous ligands has not been studied. In this study, we show that thymic selection of Vbeta7(+), but not Vbeta8.2(+), Valpha14i NKT cells is favored in situations where endogenous ligand concentration or TCRalpha-chain avidity are suboptimal. Furthermore, thymic Vbeta7(+) Valpha14i NKT cells were preferentially selected in vitro in response to CD1d-dependent presentation of endogenous ligands or exogenously added self ligand isoglobotrihexosylceramide. Collectively, our data demonstrate that the TCR Vbeta domain influences the selection of Valpha14i NKT cells by endogenous ligands, presumably because Vbeta7 confers higher avidity binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have established H-2D(d)-transgenic (Tg) mice, in which H-2D(d) expression can be extinguished by Cre recombinase-mediated deletion of an essential portion of the transgene (Tg). NK cells adapted to the expression of the H-2D(d) Tg in H-2(b) mice and acquired reactivity to cells lacking H-2D(d), both in vivo and in vitro. H-2D(d)-Tg mice crossed to mice harboring an Mx-Cre Tg resulted in mosaic H-2D(d) expression. That abrogated NK cell reactivity to cells lacking D(d). In D(d) single Tg mice it is the Ly49A+ NK cell subset that reacts to cells lacking D(d), because the inhibitory Ly49A receptor is no longer engaged by its D(d) ligand. In contrast, Ly49A+ NK cells from D(d) x MxCre double Tg mice were unable to react to D(d)-negative cells. These Ly49A+ NK cells retained reactivity to target cells that were completely devoid of MHC class I molecules, suggesting that they were not anergic. Variegated D(d) expression thus impacts specifically missing D(d) but not globally missing class I reactivity by Ly49A+ NK cells. We propose that the absence of D(d) from some host cells results in the acquisition of only partial missing self-reactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last ten years of research in the field of innate immunity have been incredibly fertile: the transmembrane Toll-like receptors (TLRs) were discovered as guardians protecting the host against microbial attacks and the emerging pathways characterized in detail. More recently, cytoplasmic sensors were identified, which are capable of detecting not only microbial, but also self molecules. Importantly, while such receptors trigger crucial host responses to microbial insult, over-activity of some of them has been linked to autoinflammatory disorders, hence demonstrating the importance of tightly regulating their actions over time and space. Here, we provide an overview of recent findings covering this area of innate and inflammatory responses that originate from the cytoplasm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

c-Jun N-terminal kinases (SAPK/JNKs) are activated by inflammatory cytokines, and JNK signaling is involved in insulin resistance and beta-cell secretory function and survival. Chronic high glucose concentrations and leptin induce interleukin-1beta (IL-1beta) secretion from pancreatic islets, an event that is possibly causal in promoting beta-cell dysfunction and death. The present study provides evidence that chronically elevated concentrations of leptin and glucose induce beta-cell apoptosis through activation of the JNK pathway in human islets and in insulinoma (INS 832/13) cells. JNK inhibition by the dominant inhibitor JNK-binding domain of IB1/JIP-1 (JNKi) reduced JNK activity and apoptosis induced by leptin and glucose. Exposure of human islets to leptin and high glucose concentrations leads to a decrease of glucose-induced insulin secretion, which was partly restored by JNKi. We detected an interplay between the JNK cascade and the caspase 1/IL-1beta-converting enzyme in human islets. The caspase 1 gene, which contains a potential activating protein-1 binding site, was up-regulated in pancreatic sections and in isolated islets from type 2 diabetic patients. Similarly, cultured human islets exposed to high glucose- and leptin-induced caspase 1 and JNK inhibition prevented this up-regulation. Therefore, JNK inhibition may protect beta-cells from the deleterious effects of high glucose and leptin in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUME : BAFF est un membre de 1a famille du TNF qui contrôle l'homéostasie des lymphocytes B. BAFF lie les récepteurs TACI, BCMA et BAFF-R sur les cellules B, tandis qu'APRIL, son proche homologue, lie seulement TACI et BCMA. BAFF et APRIL sont des protéines transmembranaires pouvant -être relâchées sous forme de cytokines trimériques solubles suite à un clivage protéolytique. Le BAFF soluble peut s'assembler en 60-mère. Les rôles physiologiques des BAFF membranaires et solubles sont inconnnus. Nous avons étudié la capacité de diverses formes de BAFF et APRIL à activer différents récepteurs. BAFF-R répond à toutes les formes dé BAFF, tandis que TACI nécessite du BAFF ou de l'APRIL membranaire ou oligomérisé pour être activé et pour transmettre des signaux de survie dans les lymphocytes B primaires. TACI ne répond pas aux ligands trimériques bien qu'il puisse les lier. TACI est essentiel pour la réponse humorale aux antigènes présentant des épitoges répétitifs, une réponse qui est indépendante des lymphocytes T (réponse TI-2). Des souris exprimant moins de BAFF ont un pourcentage modérément réduit de lymphocytes B et leur réponse TI-2 est atténuée. Par contre, des souris qui n'expriment que du BAFF membranaire ont encore moins de cellules B mais répondent efficacement aux antigènes TI-2. Ces résultats suggèrent que le BAFF soluble est impliqué dans le maintien de la population des lymphocytes B, alors que le BAFF membranaire peut activer TACI lors d'are réponse TI-2. Le BAFF 60-mère est un autre activateur potentiel de TACI in vivo. Le BAFF 60-mère existe dans des surnageants de cellules productrices de BAFF mais n'est pas détecté dans le plasma de souris saines, même lorsqu'elles présentent des niveaux élevés de BAFF. BAFF 60-mère est néanmoins présent dans le plasma de souris transgéniques pour BAFF et de souris déficientes en TACI. Comme ces deux lignées présentent des signes d'autoimmunité, ces résultats suggèrent que la présence de BAFF 60-mère pourrait être liée à des conditions pathologiques. Summary : The TNF family ligand BAFF is essential for B cell homeostasis. BAFF binds to the receptors TACI, BCMA and BAFF-R on B cells, whereas its close homolog APRIL binds to TACI and BCMA only. BAFF and APRIL are transmembrane proteins, which can be proteolytically processed to release trimeric soluble cytokines. Soluble BAFF 3-mer can further assemble in a 60-mer. The physiological roles of membrane-bound and soluble BAFF are unknown. We studied the ability of various forms of BAFF and APRIL to signal through different receptors. BAFF-R responded to all forms of BAFF, but TACI required membrane-bound, cross-licked or oligomeric BAFF or APRIL in order to transmit productive signals in primary B cells. TACI was unresponsive to trimeric ligands, although it could bind them. TACI is essential for T-cell independent antibody responses to antigens with repetitive epitopes (TI-2 responses). Mice expressing lower than normal levels of BAFF displayed a moderate B cell reduction and impaired TI-2 responses, whereas mice expressing membrane-bound BAFF displayed severe B cell reduction, but unimpaired TI-2 responses. These results suggest that processed BAFF is involved in the maintenance of the B cell pool and that membrane-bound BAFF can activate TACI during T-cell independent humoral responses. BAFF 60-mer is another potential activator of TACI in vivo. BAFF 60-mer was detected in the supernatant of BAFF-producing cells, but not in the plasma of healthy mice with either norma1 or elevated BAFF levels. It was however present in sera of BAFF transgenic mice and TACI-/- mice, both of which suffer from autoimmunity, suggesting that GAFF 60-mer may be linked to pathogenic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site-directed mutagenesis and molecular dynamics analysis of the 3-D model of the alpha1B-adrenergic receptor (AR) were combined to identify the molecular determinants of the receptor involved in catecholamine binding. Our results indicate that the three conserved serines in the fifth transmembrane domain (TMD) of the alpha1B-AR play a distinct role in catecholamine binding versus receptor activation. In addition to the amino acids D125 in TMDIII and S207 in TMDV directly involved in ligand binding, our findings identify a large number of polar residues playing an important role in the activation process of the alpha1B-AR thus providing new insights into the structure/function relationship of G protein-coupled receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region is robustly associated with smoking quantity. Conversely, the association between one of the most significant single nucleotide polymorphisms (SNPs; rs1051730 within the CHRNA3 gene) with perceived difficulty or willingness to quit smoking among current smokers is unknown. METHODS: Cross-sectional study including current smokers, 502 women, and 552 men. Heaviness of smoking index (HSI), difficulty, attempting, and intention to quit smoking were assessed by questionnaire. RESULTS: The rs1051730 SNP was associated with increased HSI (age, gender, and education-adjusted mean ± SE: 2.6 ± 0.1, 2.2 ± 0.1, and 2.0 ± 0.1 for AA, AG, and GG genotypes, respectively, p < .01). Multivariate logistic regression adjusting for gender, age, education, leisure-time physical activity, and personal history of cardiovascular or lung disease showed rs1051730 to be associated with higher smoking dependence (odds ratio [OR] and 95% CI for each additional A-allele: 1.38 [1.11-1.72] for smoking more than 20 cigarette equivalents/day; 1.31 [1.00-1.71] for an HSI ≥5 and 1.32 [1.05-1.65] for smoking 5 min after waking up) and borderline associated with difficulty to quit (OR = 1.29 [0.98-1.70]), but this relationship was no longer significant after adjusting for nicotine dependence. Also, no relationship was found with willingness (OR = 1.03 [0.85-1.26]), attempt (OR = 1.00 [0.83-1.20]), or preparation (OR = 0.95 [0.38-2.38]) to quit. Similar findings were obtained for other SNPs, but their effect on nicotine dependence was no longer significant after adjusting for rs1051730. Conclusions: These data confirm the effect of rs1051730 on nicotine dependence but failed to find any relationship with difficulty, willingness, and motivation to quit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : GABA, the primary inhibitory neurotransmitter, and its receptors play an important role in modulating neuronal activity in the central nervous system and are implicated in many neurological disorders. In this study, GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas TC (= primary auditory area), TB, and TA. Both hemispheres from nine neurologically normal subjects and from four patients with subacute or chronic stroke were included. In normal brains, GABAA receptor subunit (α1, α2, & β2/3) labeling produced neuropil staining throughout all cortical layers as well as labeling fibers and neurons in layer VI for all auditory areas. Densitometry profiles displayed differences in GABAA subunit expression between primary and non-primary areas. In contrast to the neuropil labeling of GABAA subunits, GABAB1 and GABAB2 subunit immunoreactivity was revealed on neuronal somata and proximal dendritic shafts of pyramidal and non-pyramidal neurons in layers II-III, more strongly on supra- than in infragranular layers. No differences were observed between auditory areas. In stroke cases, we observed a downregulation of the GABAA receptor α2 subunit in granular and infragranular layers, while the other GABAA and the two GABAB receptor subunits remained unchanged. Our results demonstrate a strong presence of GABAA and GABAB receptors in the human auditory cortex, suggesting a crucial role of GABA in shaping auditory responses in the primary and non-primary auditory areas. The differential laminar and area expression of GABAA subunits that we have found in the auditory areas and which is partially different from that in other cortical areas speaks in favor of a fine turning of GABA-ergic transmission in these different compartments. In contrast, GABAB expression displayed laminar, but not areal differences; its basic pattern was also very similar to that of other cortical areas, suggesting a more uniform role within the cerebral cortex. In subacute and chronic stroke, the selective GABAA α2 subunit downregulation is likely to influence postlesional plasticity and susceptibility to medication. The absence of changes in the GABAB receptors suggests different regulation than in other pathological conditions, such as epilepsy, schizophrenia or bipolar disorder, in which a downregulation has been reported. Résumé : GABA, le principal neurotransmetteur inhibiteur, et ses récepteurs jouent un rôle important en tant que modulateur de l'activité neuronale dans le système nerveux central et sont impliqués dans de nombreux désordres neurologiques. Dans cette étude, l'expression des sous-unités des récepteur GABAA et GABAB a été visualisée par immunohistochimie dans les aires auditives du cortex humains: le TC (= aire auditif primaire), le TB, et le TA. Les deux hémisphères de neuf sujets considérés normaux du point de vue neurologique et de quatre patients ayant subis un accident cérébro-vasculaire et se trouvant dans la phase subaiguë ou chronique étaient inclues. Dans les cerveaux normaux, les immunohistochimies contre les sous-unités α1, α2, & β2/3 du récepteur GABAA ont marqué le neuropil dans toutes les couches corticales ainsi que les fibres et les neurones de la couche VI dans toutes les aires auditives. Le profile densitométrique montre des différences dans l'expression des sous-unités du récepteur GABAA entre les aires primaires et non-primaires. Contrairement au marquage de neuropil par les sous-unités du recepteur GABAA, 1'immunoréactivité des sous-unités GABAB1 et GABAB2 a été révélée sur les corps cellulaires neuronaux et les dendrites proximaux des neurones pyramidaux et non-pyramidaux dans les couches II-III et est plus dense dans les couches supragranulaires que dans les couches infragranulaires. Aucune différence n'a été observée entre les aires auditives. Dans des cas lésionnels, nous avons observé une diminution de la sous-unité α2 du récepteur GABAA dans les couches granulaires et infragranulaires, alors que le marquage des autres sous-unités du récepteur GABAA et des deux sous-unités de récepteur GABAB reste inchangé. Nos résultats démontrent une présence forte des récepteurs GABAA et GABAB dans le cortex auditif humain, suggérant un rôle crucial du neurotransmetteur GABA dans la formation de la réponse auditive dans les aires auditives primaires et non-primaires. L'expression différentielle des sous-unités de GABAA entre les couches corticales et entre les aires auditives et qui est partiellement différente de celle observée dans d'autres aires corticales préconise une modulation fine de la transmission GABA-ergic en ces différents compartiments. En revanche, l'expression de GABAB a montré des différences laminaires, mais non régionales ; son motif d'expression de base est également très semblable à celui d'autres aires corticales, suggérant un rôle plus uniforme dans le cortex cérébral. Dans les phases subaiguë et chronique des accidents cérébro-vasculaires, la diminution sélective de la sous-unité α2 du recepteur GABAA est susceptible d'influencer la plasticité et la susceptibilité postlésionnelle au médicament. L'absence de changement pour les récepteurs GABAB suggère que le récepteur est régulé différemment après un accident cerebro-vasculaire par rapport à d'autres conditions pathologiques, telles que l'épilepsie, la schizophrénie ou le désordre bipolaire, dans lesquels une diminution de ces sous-unités a été rapportée.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.