972 resultados para RAY SOLUTION SCATTERING
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Polymer based scintillator composites have been fabricated by combining poly(vinylidene fluoride) (PVDF) and Gd2O3:Eu nanoparticles (50nm). PVDF has been used since it is a flexible and stable binder matrix and highly resistance to thermal and light deterioration. Gd2O3:Eu has been selected as scintillator material due to its wide band gap, high density and suitable visible light yield. The structural, mechanical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. The introduction of Gd2O3:Eu nanoparticles into the PVDF matrix does not influence the morphology of the polymer or the degree of crystallinity. On the other hand, an increase of the Young´s modulus with respect to PVDF matrix is observed for filler contents of 0.1-0.75 wt.%. The introduction of Gd2O3:Eu into the PVDF matrix increases dielectric constant and DC electrical conductivity as well as the visible light yield in the nanocomposite, being this increase dependent upon Gd2O3:Eu content and X-ray input power. In this way, Gd2O3:Eu/PVDF composites shows suitable characteristics to be used as X-ray radiation transducers, in particular for large area applications.
Resumo:
Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way.
Resumo:
Adatom-decorated graphene offers a promising new path towards spintronics in the ultrathin limit. We combine experiment and theory to investigate the electronic properties of dilutely fluorinated bilayer graphene, where the fluorine adatoms covalently bond to the top graphene layer. We show that fluorine adatoms give rise to resonant impurity states near the charge neutrality point of the bilayer, leading to strong scattering of charge carriers and hopping conduction inside a field-induced band gap. Remarkably, the application of an electric field across the layers is shown to tune the resonant scattering amplitude from fluorine adatoms by nearly twofold. The experimental observations are well explained by a theoretical analysis combining Boltzmann transport equations and fully quantum-mechanical methods. This paradigm can be generalized to many bilayer graphene-adatom materials, and we envision that the realization of electrically tunable resonance may be a key advantage in graphene-based spintronic devices.
Resumo:
For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.
Resumo:
The barrier effect and the performance of an organic–inorganic hybrid (OIH) sol–gel coating are highlydependent on the coating deposition method as well as processing conditions. In this work, studies onthe influence of experimental parameters using the dip coating method were performed. Factors suchas residence time (Rt), a curing step between each dip step and the number of layers of sol–gel OIHfilms deposited on HDGS to prevent corrosion in highly alkaline environments were studied. These OIHcoatings were obtained using a functionalized siloxane, 3-isociantepropyltriethoxysilane that reactedwith a diamino-functionalized oligopolymer (Jeffamine®D-230). The barrier efficiency of OIH coatings insimulated concrete pore solutions (SCPS) was assessed in the first moments of contact, by electrochemicalimpedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings inSCPS was monitored during eight days by macrocell current density. The morphological characterizationof the surface was performed by scanning electronic microscopy before and after exposure to SCPS.Glow discharge optical emission spectroscopy was used to obtain quantitative composition profiles toinvestigate the thickness of the OIH coatings as a function of the number of layers deposited and theinfluence of the Rt in the coating thickness.
Resumo:
Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)