997 resultados para QGP quark gluon plasma QCD Ultrarelativisitic Heavy Ion Collisions Read-out Bandwidth Simulation Continuous Trigger ALICE CERN TOF HPTDC MRPC TRM crate
Resumo:
Pore water was collected from each of 10 sites during Ocean Drilling Program (ODP) Leg 168 on the eastern flank of the Juan de Fuca Ridge. These ten sites delineate a transect perpendicular to the present ridge axis and span a crustal age of 0.86-3.59 Ma. At nine of the ten sites the entire sediment section, which ranged from 41.3 to 613.8 m thick, was cored and attempts were made to recover at least one whole round of sediment per section of core for extraction of pore water. Several (2-5) whole-round sediment samples were taken from the uppermost and lowermost cores to constrain the chemical gradient near the sediment/water and sediment/basalt interfaces, respectively. Pore water was extracted from whole-round sediment core sections by squeezing only the most pristine sediment in a titanium squeezer designed by Manheim and Sayles (1974). Two additional water samples were collected in situ using the water-sampler temperature probe (WSTP; Barnes, 1988, doi:10.2973/odp.proc.ir.110.104.1988). Both of these samples were collected in the cased section of the open borehole from ODP Hole 1026B. Formation fluids were flowing up the cased hole into the overlying deep seawater (Fisher et al., 1997, doi:10.1029/97GL01286). Detailed descriptions of the sampling methods that were used to collect fluids are given by the Shipboard Scientific Party (Davis, Fisher, Firth, et al., 1997, doi:10.2973/odp.proc.ir.168.1997).
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-03
Resumo:
The purpose of this work is the development of database of the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions and provides remote access to information and hardware resources within the Intranet/Internet networks. The database is based on database management system Oracle9i. Client software was realized in Java language. The software was developed using Model View Controller architecture, which separates application data from graphical presentation components and input processing logic. The following graphical presentations were implemented: measurement of radiation spectra of beam and plasma objects, excitation function for non-elastic collisions of heavy particles and analysis of data acquired in preceding experiments. The graphical clients have the following functionality of the interaction with the database: browsing information on experiments of a certain type, searching for data with various criteria, and inserting the information about preceding experiments.
Resumo:
The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface. No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3-50 cm/y) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1-2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.
Resumo:
Pore water was collected from sediment cores from Holes 1202A and 1202D in the southern Okinawa Trough during Ocean Drilling Program (ODP) Leg 195. Because drilling at this site was completed only a few hours out of port during the end of the leg, whole rounds of sediment core 5 or 10 cm long were sealed and stored at ~3°C until pore water could be extracted from them during Leg 196, using a titanium squeezer designed by Manheim and Sayles (1974) and standard handling techniques (Shipboard Scientific Party, 2002, doi:10.2973/odp.proc.ir.195.103.2002).
Resumo:
We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and d13C-CH4 values of -50.6 per mil. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas-sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42- and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.