3 resultados para QGP quark gluon plasma QCD Ultrarelativisitic Heavy Ion Collisions Read-out Bandwidth Simulation Continuous Trigger ALICE CERN TOF HPTDC MRPC TRM crate

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described in this thesis represents an attempt to summarize to date the information collected on the process of high energy heavy ion induced enhanced adhesion. Briefly, the process involves the irradiation of materials covered by thin (≾3μm) films with high energy (E > 200 keV I nucleon) heavy ion beams (such as Fluorine or Chlorine). Enhanced adhesion has been observed on all material combinations tested, including metal on metal, metal on semiconductor, metal on dielectric and dielectric on dielectric systems. In some cases, the enhancement can be quite large, so that a film that could be wiped off a substrate quite easily before irradiation can withstand determined scrubbing afterwards.

Very little is understood yet about this adhesion mechanism, so what is presented are primarily observations about systems studied, and descriptions of the actual preparation and irradiation of samples used. Some discussion is presented about mechanisms that have been considered but rejected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collector-type experiments have been conducted to investigate two different aspects of sputtering induced by keV ions. The first study looked for possible ejection mechanisms related to the primary charge state of the projectile. Targets of CsI and LiNbO_3 were bombarded with 48 keV Ar^(q+), and a Au target was bombarded with 60 keV Ar^(q+), for q = 4, 8, and 11. The collectors were analyzed using heavy-ion Rutherford backscattering spectroscopy to determine the differential angular sputtering yields; these and the corresponding total yields were examined for variations as a function of projectile charge state. For the Au target, no significant changes were seen, but for the insulating targets slight (~10%) enhancements were observed in the total yields as the projectile charge state was increased from 4+ to 11+.

In the second investigation, artificial ^(92)Mo/^(100)Mo targets were bombarded with 5 and 10 keV beams of Ar^+ and Xe^+ to study the isotopic fractionation of sputtered neutrals as a function of emission angle and projectile fluence. Using secondary ion mass spectroscopy to measure the isotope ratio on the collectors, material ejected into normal directions at low bombarding fluences (~ 10^(15) ions cm^(-2)) was found to be enriched in the light isotope by as much as ~70‰ compared to steady state. Similar results were found for secondary Mo ions sputtered by 14.5 keV O^-. For low-fluence 5 keV Xe^+ bombardment, the light-isotope enrichment at oblique angles was ~20‰ less than the corresponding enrichment in the normal direction. No angular dependence could be resolved for 5 keV Ar^+ projectiles at the lowest fluence. The above fractionation decreased to steady-state values after bombarding fluences of a few times 10^(16) ions cm^(-2) , with the angular dependence becoming more pronounced. The fractionation and total sputtering yield were found to be strongly correlated, indicating that the above effects may have been related to the presence of a modified target surface layer. The observed effects are consistent with other secondary ion measurements and multiple-interaction computer simulations, and are considerably larger than predicted by existing analytic theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-pulse stimulated radiation of dense (10^9/cm^3 < ne ≤ 10^(11) /cm^3) nonuniform neon and argon afterglow plasma columns longitudinally immersed in a magnetic field is studied. The magnetic field is very homogeneous over the plasma volume (∆B/B~.01%). If the S-band microwave pulses' center frequency is such that they resonantly excite a narrow band of plasma upper hybrid oscillations close to the maximum upper hybrid frequency of the column, strong two pulse echoes are observed. This new echo process is called the upper hybrid echo. The echo spectrum, echo power and echo width were studied as a function of the pulse peak power P, pulse separation τ, relative density (ω_(po)/ω)^2, and relative cyclotron frequency (ω_c/ω). The complex but systematic variations of the echo properties as a function of the above-mentioned parameters arc found to be in qualitative agreement with those predicted by a theory of Gould and Blum based upon a simple nonuniform unidimensional cold plasma slab model. The possible effects of electron neutral and electron ion collisions not retained in the theoretical model are discussed.

The existence of a new type of cyclotron echo, different from that of Hill and Kaplan and not predicted by the Blum and Gould model is documented. It is believed to be also of a collective effect nature and can probably be described in terms of a theory retaining some hot plasma effects.