971 resultados para Process systems engineering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Buried pipelines may be subject to upheaval buckling because of thermally induced compressive stresses. As the buckling load of a strut decreases with increasing out of straightness, not only the maximum available resistance from the soil cover, but also the movement of the pipeline required to mobilize this are important factors in design. This paper will describe the results of 15 full-scale laboratory tests that have been carried out on pipeline uplift in both sandy and rocky backfills. The cover to diameter ratio ranged from 0.1 to 6. The results show that mobilization distance exhibits a linear relationship with H=D ratio and that the postpeak uplift force-displacement response can be accurately modeled using existing models. A tentative design approach is suggested; the maximum available uplift resistance may be reliably predicted from the postpeak response, and the mobilization distance may be predicted using the relationships described in this paper. © 2012 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of terms such as “Engineering Systems”, “System of systems” and others have been coming into greater use over the past decade to denote systems of importance but with implied higher complexity than for the term systems alone. This paper searches for a useful taxonomy or classification scheme for complex Systems. There are two aspects to this problem: 1) distinguishing between Engineering Systems (the term we use) and other Systems, and 2) differentiating among Engineering Systems. Engineering Systems are found to be differentiated from other complex systems by being human-designed and having both significant human complexity as well as significant technical complexity. As far as differentiating among various engineering systems, it is suggested that functional type is the most useful attribute for classification differentiation. Information, energy, value and mass acted upon by various processes are the foundation concepts underlying the technical types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach to the prediction of bend lifetime in pneumatic conveyors, subject to erosive wear is described. Mathematical modelling is exploited. Commercial Computational Fluid Dynamics (CFD) software is used for the prediction of air flow and particle tracks, and custom code for the modelling of bend erosion and lifetime prediction. The custom code uses a toroidal geometry, and employs a range of empirical data rather than trying to fit classical erosion models to a particular circumstance. The data used was obtained relatively quickly and easily from a gas-blast erosion tester. A full-scale pneumatic conveying rig was used to validate a sample of the bend lifetime predictions, and the results suggest accuracy of within ±65%, using calibration methods. Finally, the work is distilled into user-friendly interactive software that will make erosion lifetime predictions for a wide range of bends under varying conveying conditions. This could be a valuable tool for the pneumatic conveyor design or maintenance engineer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Problems in the preservation of the quality of granular material products are complex and arise from a series of sources during transport and storage. In either designing a new plant or, more likely, analysing problems that give rise to product quality degradation in existing operations, practical measurement and simulation tools and technologies are required to support the process engineer. These technologies are required to help in both identifying the source of such problems and then designing them out. As part of a major research programme on quality in particulate manufacturing computational models have been developed for segregation in silos, degradation in pneumatic conveyors, and the development of caking during storage, which use where possible, micro-mechanical relationships to characterize the behaviour of granular materials. The objective of the work presented here is to demonstrate the use of these computational models of unit processes involved in the analysis of large-scale processes involving the handling of granular materials. This paper presents a set of simulations of a complete large-scale granular materials handling operation, involving the discharge of the materials from a silo, its transport through a dilute-phase pneumatic conveyor, and the material storage in a big bag under varying environmental temperature and humidity conditions. Conclusions are drawn on the capability of the computational models to represent key granular processes, including particle size segregation, degradation, and moisture migration caking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se analizan y describen las principales líneas de trabajo de la Web Semántica en el ámbito de los archivos de televisión. Para ello, se analiza y contextualiza la web semántica desde una perspectiva general para posteriormente analizar las principales iniciativas que trabajan con lo audiovisual: Proyecto MuNCH, Proyecto S5T, Semantic Television y VideoActive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.