986 resultados para Platelets protease activated receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PPARbeta is expressed in the mouse epidermis during fetal development, and progressively disappears from the interfollicular epidermis after birth. Interestingly, its expression is strongly reactivated in the adult epidermis in conditions where keratinocyte proliferation is induced and during wound healing. Data obtained on PPARbeta heterozygous mice reveal that PPARbeta is implicated in the control of keratinocyte proliferation and is necessary for rapid healing of a skin wound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease activities in the haemolymph and fat body in a bloodsucking insect, Rhodnius prolixus, infected with Trypanosoma rangeli, were investigated. After SDS-polyacrylamide gel electrophoresis containing gelatin as substrate, analysis of zymograms performed on samples of different tissues of controls and insects inoculated or orally infected with short or long epimastigotes of T. rangeli, demonstrated distinct patterns of protease activities: (i) proteases were detected in the haemolymph of insects which were fed on, or inoculated with, short epimastigotes of T. rangeli (39 kDa and 33 kDa, respectively), but they were not observed in the fat body taken from these insects; (ii) protease was also presented in the fat bodies derived from naive insects or controls inoculated with sterile phosphate-saline buffer (49 kDa), but it was not detected in the haemolymph of these insects; (iii) no protease activity was observed in both haemolymph and fat bodies taken from insects inoculated with, or fed on, long epimastigotes of T. rangeli. Furthermore, in short epimastigotes of T. rangeli extracts, three bands of the protease activities with apparent molecular weights of 297, 198 and 95 kDa were detected while long epimastigotes preparation presented only two bands of protease activities with molecular weights of 297 and 198 kDa. The proteases from the insect infected with T. rangeli and controls belong to the class of either metalloproteases or metal-activated enzymes since they are inhibited by 1,10-phenanthroline. The significance of these proteases in the insects infected with short epimastigotes of T. rangeli is discussed in relation to the success of the establishment of infection of these parasites in its vector, R. prolixus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addictive properties of drugs of misuse are generally considered to be mediated by an increased release of dopamine (DA) in the ventral striatum. However, recent experiments indicated an implication of alpha1b-adrenergic receptors in behavioural responses to psychostimulants and opiates. We show now that DA release induced in the ventral striatum by morphine (20 mg/kg) is completely blocked by prazosin (1 mg/kg), an alpha1-adrenergic antagonist. However, morphine-induced increases in DA release in the ventral striatum were found to be similar in mice deleted for the alpha1b-adrenergic receptor (alpha1b-AR KO) and in wild-type (WT) mice, suggesting the presence of a compensatory mechanism. This acute morphine-evoked DA release was completely blocked in alpha1b-AR KO mice by SR46349B (1 mg/kg), a 5-HT2A antagonist. SR46349B also completely blocked, in alpha1b-AR KO mice, the locomotor response and the development of behavioural sensitization to morphine (20 mg/kg) and D-amphetamine (2 mg/kg). Accordingly, the concomitant blockade of 5-HT2A and alpha1b-adrenergic receptors in WT mice entirely blocked acute locomotor responses but also the development of behavioural sensitization to morphine, D-amphetamine or cocaine (10 mg/kg). We observed, nevertheless, that inhibitory effects of each antagonist on locomotor responses to morphine or D-amphetamine were more than additive (160%) in naïve WT mice but not in those sensitized to either drug. Because of these latter data and the possible compensation by 5-HT2A receptors for the genetic deletion of alpha1b-adrenergic receptors, we postulate the existence of a functional link between these receptors, which vanishes during the development of behavioural sensitization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the role of urokinase and tissue-type plasminogen activators (uPA and tPA), as well as the uPA receptor (uPAR; CD87) in mouse severe malaria (SM), using genetically deficient (-/-) mice. The mortality resulting from Plasmodium berghei ANKA infection was delayed in uPA(-/-) and uPAR(-/-) mice but was similar to that of the wild type (+/+) in tPA(-/-) mice. Parasitemia levels were similar in uPA(-/-), uPAR(-/-), and +/+ mice. Production of tumor necrosis factor, as judged from the plasma level and the mRNA levels in brain and lung, was markedly increased by infection in both +/+ and uPAR(-/-) mice. Breakdown of the blood-brain barrier, as evidenced by the leakage of Evans Blue, was similar in +/+ and uPAR(-/-) mice. SM was associated with a profound thrombocytopenia, which was attenuated in uPA(-/-) and uPAR(-/-) mice. Administration of aprotinin, a plasmin antagonist, also delayed mortality and attenuated thrombocytopenia. Platelet trapping in cerebral venules or alveolar capillaries was evident in +/+ mice but absent in uPAR(-/-) mice. In contrast, macrophage sequestration in cerebral venules or alveolar capillaries was evident in both +/+ and uPAR(-/-) mice. Polymorphonuclear leukocyte sequestration in alveolar capillaries was similar in +/+ and uPAR(-/-) mice. These results demonstrate that the uPAR deficiency attenuates the severity of SM, probably by its important role in platelet kinetics and trapping. These results therefore suggest that platelet sequestration contributes to the pathogenesis of SM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Les vertébrés ont recours au système immunitaire inné et adaptatif pour combattre les pathogènes. La découverte des récepteurs Toll, il y a dix ans, a fortement augmenté l'intérêt porté à l'immunité innée. Depuis lors, des récepteurs intracellulaires tels que les membres de la famille RIG-like helicase (RLHs) et NOD-like receptor (NLRs) ont été décrits pour leur rôle dans la détection des pathogènes. L'interleukine-1 beta (IL-1β) est une cytokine pro-inflammatoire qui est synthétisée sous forme de précurseur, la proIL-1β. La proIL-1β requiert d'être clivée par la caspase-1 pour devenir active. La caspase-1 est elle-même activée par un complexe appelé inflammasome qui peut être formé par divers membres de la famille NLR. Plusieurs inflammasomes ont été décrits tels que le NALP3 inflammasome ou l'IPAF inflammasome. Dans cette étude nous avons identifié la co-chaperone SGT1 et la chaperone HSP90 comme partenaires d'interaction de NALP3. Ces deux protéines sont bien connues chez les plantes pour leurs rôles dans la régulation des gènes de résistance (gène R) qui sont structurellement apparentés à la famille NLR. Nous avons pu montrer que SGT1 et HSP90 jouent un rôle similaire dans la régulation de NALP3 et des protéines R. En effet, nous avons démontré que les deux protéines sont nécessaires pour l'activité du NALP3 inflammasome. De plus, la HSP90 est également requise pour la stabilité de NALP3. En se basant sur ces observations, nous avons proposé un modèle dans lequel SGT1 et HSP90 maintiennent NALP3 inactif mais prêt à percevoir un ligand activateur qui initierait la cascade inflammatoire. Nous avons également montré une interaction entre SGT1 et HSP90 avec plusieurs NLRs. Cette observation suggère qu'un mécanisme similaire pourrait être impliqué dans la régulation des membres de la famille des NLRs. Ces dernières années, plusieurs PAMPs mais également des DAMPs ont été identifiés comme activateurs du NALP3 inflammasome. Dans la seconde partie de cette étude, nous avons identifié la réponse au stress du réticulum endoplasmique (RE) comme nouvel activateur du NALP3 inflammasome. Cette réponse est initiée lors de l'accumulation dans le réticulum endoplasmique de protéines ayant une mauvaise conformation ce qui conduit, en autre, à l'arrêt de la synthèse de nouvelles protéines ainsi qu'une augmentation de la dégradation des protéines. Les mécanismes par lesquels la réponse du réticulum endoplasmique induit l'activation du NALP3 inflammasome doivent encore être déterminés. Summary : Vertebrates rely on the adaptive and the innate immune systems to fight pathogens. Awarness of the importance of the innate system increased with the identification of Toll-like receptors a decade ago. Since then, intracellular receptors such as the RIG-like helicase (RLH) and the NOD-like receptor (NLR) families have been described for their role in the recognition of microbes. Interleukin- 1ß (IL-1ß) is a key mediator of inflammation. This proinflammatory cytokine is synthesised as an inactive precursor that requires processing by caspase-1 to become active. Caspase-1 is, itself, activated in a complex termed the inflammasome that can be formed by members of the NLR family. Various inflammasome complexes have been described such as the IPAF and the NALP3 inflammasome. In this study, we have identified the co-chaperone SGT1 and the chaperone HSP90 as interacting partners of NALP3. SGT1 and HSP90 are both known for their role in the activity of plant resistance proteins (R proteins) which are structurally related to the NLR family. We have shown that HSP90 and SGT1 play a similar role in the regulation of NALP3 and in the regulation of plant R proteins. Indeed, we demonstrated that both HSP90 and SGT1 are essential for the activity of the NALP3 inflammasome complex. In addition, HSP90 is required for the stability of NALP3. Based on these observations, we have proposed a model in which SGT1 and HSP90 maintain NALP3 in an inactive but signaling-competent state, ready to receive an activating ligand that induces the inflammatory cascade. An interaction between several NLR members, SGTI and HSP90 was also shown, suggesting that similar mechanisms could be involved in the regulation of other NLRs. Several pathogen-associated molecular patterns (PAMPs) but also danger associated molecular patterns (DAMPs) have been identified as NALP3 activators. In the second part of this study, we have identified the ER stress response as a new NALP3 activator. The ER stress response is activated upon the accumulation of unfolded protein in the endoplasmic reticulum and results in a block in protein synthesis and increased protein degradation. The mechanisms of ER stress-mediated NALP3 activation remain to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigación producida a partir de una estancia en la University of Sidney, Australia, entre octubre del 2008 y enero del 2009. Se ha desarrollado el proyecto titulado "Papel de la interleucina 6 (IL6) en la regulación de la expresión de Osteopontina (OPN) y de CD44 tras axotomía del nervio facial". Tras efectuar una transección del nervio facial, se indujo una reactividad glial en el núcleo facial (NF) localizado en el tronco cerebral, utilizando ratones transgénicos que sobrexpresan IL6 bajo promotor GFAP (tg GFAP-IL6), es decir selectivamente en astrocitos. Se han utilizado técnicas histoquímicas e inmunohistoquímicas, así como también se ha completado el estudio utilizando análisis de RPA, western blotting y citometría de flujo para la identificación de poblaciones celulares. Los resultados obtenidos indican que la OPN se expresa constitutivamente en las neuronas del NF. Tras axotomía del nervio facial, la expresión de OPN y CD44 incrementa en los ratones WT, mientras que en los tg GFAP-IL6 disminuye significativamente, sugiriendo que la IL6 podría estar involucrada en la modulación de la expresión de ambas moléculas. Sin embargo, no se ha visto diferencias en otros receptores de OPN como la integrina Alpha-5. La ctometría de flujo corroboró algunos de los resultados histológicos sobre la reactividad microglial y permitió concluir que la proporción de microglía activada (CD11b+/CD45+mid) y macrófagos (CD11b+/CD45+high) que expresan CD44 incrementa en in los tg GFAP-IL6 versus WT donde la mayor parte de microglia activada mostraba un perfil CD11b+/CD45+low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular protease subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in the proteolytic processing of the viral envelope glycoprotein precursor (GPC) of arenaviruses, a step strictly required for production of infectious progeny. The small molecule SKI-1/S1P inhibitor PF-429242 was shown to have anti-viral activity against Old World arenaviruses. Here we extended these studies and show that PF-429242 also inhibits GPC processing and productive infection of New World arenaviruses, making PF-429242 a broadly active anti-arenaviral drug. In combination therapy, PF-429242 potentiated the anti-viral activity of ribavirin, indicating a synergism between the two drugs. A hallmark of arenaviruses is their ability to establish persistent infection in vitro and in vivo. Notably, PF-429242 was able to efficiently and rapidly clear persistent infection by arenaviruses. Interruption of drug treatment did not result in re-emergence of infection, indicating that PF-429242 treatment leads to virus extinction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two receptors for TRAIL, designated TRAIL-R2 and TRAIL-R3, have been identified. Both are members of the tumor necrosis factor receptor family. TRAIL-R2 is structurally similar to the death-domain-containing receptor TRAIL-R1 (DR-4), and is capable of inducing apoptosis. In contrast, TRAIL-R3 does not promote cell death. TRAIL-R3 is highly glycosylated and is membrane bound via a putative phosphatidylinositol anchor. The extended structure of TRAIL-R3 is due to the presence of multiple threonine-, alanine-, proline- and glutamine-rich repeats (TAPE repeats). TRAIL-R2 shows a broad tissue distribution, whereas the expression of TRAIL-R3 is restricted to peripheral blood lymphocytes (PBLs) and skeletal muscle. All three TRAIL receptors bind TRAIL with similar affinity, suggesting a complex regulation of TRAIL-mediated signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that CD4+ CD25+ T cells belong to two functionally different T lymphocytes, i.e. regulatory T cells (Treg) or activated T cells (Tact), which can be distinguished based on the expression of CD45RO and IL-7R: Treg (FoxP3+) are CD45RO+ IL-7R- , whereas Tact (FoxP3- ) are CD45RO+ IL- 7R+. In order to determine if a CD4+ CD25+ CD45RO+ IL-7R+ activated T cell population might be identified in kidney transplant recipients, we studied 27 healthy subjects (HS) and 23 kidney recipients, of whom 17 had stable graft function under standard immunosuppression (IS), 5 had biopsy-proven chronic humoral rejection (CHR), and one was a stable "tolerant" patient who had discontinued IS for more than 2 years. Phenotypical analysis by flow cytometry and functional assays by MLR were performed. Overall, the Tact population was found to be significantly increased in 87% of the transplant recipients (mean: 18.8±10.1% of CD4+ CD25+ T cells) compared to HS (mean: 4.5±2.0%; P<0.0001). In the 5 patients with CHR, this Tact population was highly expanded (31.3±9.3%; P<0.0001), whereas it was comparable to HS in the "tolerant" recipient (4.7%). Intermediate levels (16.0±6.9%; P<0.0001) were found in the 17 stable recipients. In CHR, the proliferative capacity of the Tact population was found to be 5-fold higher when stimulated by irradiated donor PBMC as compared to a stimulation by irradiated 3rd party PBMC. After kidney transplantation, an expanded circulating CD4+ CD25+ T cell population characterized by the expression of CD45RO and IL-7R was found in most recipients, particularly in those with CHR. In a patient with long-term operational tolerance, this Tact population was similar to HS. Measuring circulating Tact may become a useful monitoring tool after transplantation.