964 resultados para Plasma amino acids


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Certain features characterise spoilage of sea foods, as distinct from spoilage of protein foods in general. Among sea foods spoilage differs in the crustaceans, teleosts, or elasmobranchs respectively. High levels of free amino acids concentrations are characteristic of prawns and other crustacean muscle. Changes occurring in these influence pattern of spoilage. Differences also exist in the sea prawns and prawns taken from the backwaters. Melanosis is a characteristic feature of spoilage in prawns. Observations have shown that prawns are very susceptible to spoilage at ordinary temperature, the period of absolute freshness not exceeding 4 hours, while prompt icing extends the period to 3-5 days.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of sulphur amino acids, especially of methionine, in our nutrition is too well known to be emphasized. But adequate data on the sulphur and methionine contents of the cheapest of our animal foods viz., fish, are not available. In this note, the total sulphur and methionine content of 18 common fresh water fishes is presented. Total sulphur was determined by Osborne perioxide method (Winton & Winton, 1945) and methionine by the colorimetric method of Horn. (Horn et al., 1946)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) has been identified and purified to homogeneity. It is a single chain glycoprotein with an apparent molecular weight of 33,000 and an isoelectric point of pH 5.2. It specifically activates plasminogen through an enzymatic reaction. The activation of human native GIu-plasminogen by TSV-PA is due to a single cleavage of the molecule at the peptide bond Arg(561)-Val-(562). Purified TSV-PA, which catalyzes the hydrolysis of several tripeptide p-nitroanilide substrates, does not activate nor degrade prothrombin, factor X, or protein C and does not clot fibrinogen nor show fibrino(geno)lytic activity in the absence of plasminogen. The activity of TSV-PA was readily inhibited by phenylmethanesulfonyl fluoride and by p-nitrophenyl-p-guanidinobenzoate. Oligonucleotide primers designed on the basis of the N-terminal and the internal peptide sequences of TSV-PA were used for the amplification of cDNA fragments by polymerase chain reaction. This allowed the cloning of a full-length cDNA encoding TSV-PA from a cDNA library prepared from the venom glands. The deduced complete amino acid sequence of TSV-PA indicates that the mature TSV-PA protein is composed of 234 amino acids and contains a single potential N-gIycosylation site at Asn(1G1). The sequence of TSV-PA exhibits a high degree of sequence identity with other snake venom proteases: 66% with the protein C activator from Aghistrodon contortrix contortrix venom, 63% with batroxobin, and 60% with the factor V activator from Russell's viper venom. On the other hand, TSV-PA shows only 21-23% sequence similarity with the catalytic domains of u-PA and t-PA. Furthermore, TSV-PA lacks the sequence site that has been demonstrated to be responsible for the interaction of t-PA (KHRR) and u-PA (RRHR) with plasminogen activator inhibitor type 1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel trypsin inhibitor was identified and purified from skin secretions of Chinese red-belly toad Bombina maxima. The partial N-terminal 29 amino acid residues of the peptide, named BMTI, were determined by automated Edman degradation. This allowed the cloning of a full-length cDNA encoding BMTI from a cDNA library prepared from the toad skin. The deduced complete amino acid sequence of BMTI indicates that mature BMTI is composed of 60 amino acids. A FASTA search in the databanks revealed that BMTI exhibits 81.7% sequence identity with BSTI, a trypsin/thrombin inhibitor from European toad Bombina bombina skin secretions. Sequence differences between BMTI and BSTI were due to 11 substitutions at positions 2, 9, 25, 27, 36-37, 39, 41-42, 50 and 56. BMTI potently inhibited trypsin with a K-i value of 0.06 muM, similar to that of BSTI. However, unlike BSTI, which also inhibited thrombin with a K-i value of 1 muM, no inhibitory effect of BMTI on thrombin was observed under the assay conditions. (C) 2002 Elsevier Science Inc. All rights reserved.