998 resultados para Monitoring stations
Resumo:
The focus in this thesis is to study both technical and economical possibilities of novel on-line condition monitoring techniques in underground low voltage distribution cable networks. This thesis consists of literature study about fault progression mechanisms in modern low voltage cables, laboratory measurements to determine the base and restrictions of novel on-line condition monitoring methods, and economic evaluation, based on fault statistics and information gathered from Finnish distribution system operators. This thesis is closely related to master’s thesis “Channel Estimation and On-line Diagnosis of LV Distribution Cabling”, which focuses more on the actual condition monitoring methods and signal theory behind them.
Resumo:
In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.
Resumo:
Over the past decade, organizations worldwide have begun to widely adopt agile software development practices, which offer greater flexibility to frequently changing business requirements, better cost effectiveness due to minimization of waste, faster time-to-market, and closer collaboration between business and IT. At the same time, IT services are continuing to be increasingly outsourced to third parties providing the organizations with the ability to focus on their core capabilities as well as to take advantage of better demand scalability, access to specialized skills, and cost benefits. An output-based pricing model, where the customers pay directly for the functionality that was delivered rather than the effort spent, is quickly becoming a new trend in IT outsourcing allowing to transfer the risk away from the customer while at the same time offering much better incentives for the supplier to optimize processes and improve efficiency, and consequently producing a true win-win outcome. Despite the widespread adoption of both agile practices and output-based outsourcing, there is little formal research available on how the two can be effectively combined in practice. Moreover, little practical guidance exists on how companies can measure the performance of their agile projects, which are being delivered in an output-based outsourced environment. This research attempted to shed light on this issue by developing a practical project monitoring framework which may be readily applied by organizations to monitor the performance of agile projects in an output-based outsourcing context, thus taking advantage of the combined benefits of such an arrangement Modified from action research approach, this research was divided into two cycles, each consisting of the Identification, Analysis, Verification, and Conclusion phases. During Cycle 1, a list of six Key Performance Indicators (KPIs) was proposed and accepted by the professionals in the studied multinational organization, which formed the core of the proposed framework and answered the first research sub-question of what needs to be measured. In Cycle 2, a more in-depth analysis was provided for each of the suggested Key Performance Indicators including the techniques for capturing, calculating, and evaluating the information provided by each KPI. In the course of Cycle 2, the second research sub-question was answered, clarifying how the data for each KPI needed to be measured, interpreted, and acted upon. Consequently, after two incremental research cycles, the primary research question was answered describing the practical framework that may be used for monitoring the performance of agile IT projects delivered in an output-based outsourcing context. This framework was evaluated by the professionals within the context of the studied organization and received positive feedback across all four evaluation criteria set forth in this research, including the low overhead of data collection, high value of provided information, ease of understandability of the metric dashboard, and high generalizability of the proposed framework.
Resumo:
Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Resumo:
This study was designed to assess the relationship between antibodies against bovine viral diarrhea virus (BVDV) determined in the bulk tank milk (BTM) and the within-herd seroprevalence. We also assessed the efficiency of measuring antibody levels in BTM samples to monitor BVDV infection status in a herd. In the 81 farms included in the study, BTM samples were obtained and blood samples withdrawn from all cattle older than one year. The infection status was then determined in serum and milk using a commercial blocking ELISA based on the detection of anti-p80 antibodies. Apart from these baseline serum and milk samples, another BTM sample was collected from each herd 9 months later, and a third BTM sample obtained 9 months after this. In these second and third milk samples, anti-BVDV antibodies were determined using the same ELISA kit. Statistical tests revealed good agreement between herd seroprevalences (% seropositive animals in the herd) and the antibody levels detected in the BTM samples. During the 18 months of follow-up, the farms with persistently infected cattle at the study outset (14.8% of the herds) showed a significant decrease in BTM antibody titers after virus clearance. Conversely, a significant increase in BTM antibody levels was observed in the herds infected with BVDV during the follow-up period. Our findings indicate that monitoring antibody levels in the BTM is a useful method of identifying changes in the BVDV infection status of a herd.
Resumo:
The purpose of this investigation was to demonstrate the feasibility of a biopsy technique by performing serial evaluations of tissue samples of the forelimb superficial digital flexor tendon (SDFT) in healthy horses and in horses subjected to superficial digital flexor tendonitis induction. Eight adult horses were evaluated in two different phases (P), control (P1) and tendonitis-induced (P2). At P1, the horses were subjected to five SDFT biopsies of the left forelimb, with 24 hours (h) of interval. Clinical and ultrasonographic (US) examinations were performed immediately before the tendonitis induction, 24 and 48 h after the procedure. The biopsied tendon tissues were analyzed through histology. P2 evaluations were carried out three months later, when the same horses were subjected to tendonitis induction by injection of bacterial collagenase into the right forelimb SDFT. P2 clinical and US evaluations, and SDFT biopsies were performed before, and after injury induction at the following time intervals: after 24, 48, 72 and 96 h, and after 15, 30, 60, 90, 120 and 150 days. The biopsy technique has proven to be easy and quick to perform and yielded good tendon samples for histological evaluation. At P1 the horses did not show signs of localised inflammation, pain or lameness, neither SDFT US alterations after biopsies, showing that the biopsy procedure per se did not risk tendon integrity. Therefore, this procedure is feasible for routine tendon histological evaluations. The P2 findings demonstrate a relation between the US and histology evaluations concerning induced tendonitis evolution. However, the clinical signs of tendonitis poorly reflected the microscopic tissue condition, indicating that clinical presentation is not a reliable parameter for monitoring injury development. The presented method of biopsying SDFT tissue in horses enables the serial collection of material for histological analysis causing no clinical signs and tendon damage seen by US images. Therefore, this technique allows tendonitis to be monitored and can be considered an excellent tool in protocols for evaluating SDFT injury.
Resumo:
Collared peccaries (Peccary tajacu) are among the most hunted species in Latin America due the appreciation of their pelt and meat. In order to optimize breeding management of captive born collared peccaries in semiarid conditions, the objective was to describe and correlate the changes in the ovarian ultrasonographic pattern, hormonal profile, vulvar appearance, and vaginal cytology during the estrus cycle in this species. During 45 days, females (n=4) were subjected each three days to blood collection destined to hormonal dosage by enzyme immunoassay (EIA). In the same occasions, evaluation of external genitalia, ovarian ultrasonography and vaginal cytology were conducted. Results are presented as means and standard deviations. According to hormonal dosage, six estrous cycles were identified as lasting 21.0 ± 5.7 days, being on average 6 days for the estrogenic phase and 15 days for the progesterone phase. Estrogen presented mean peak values of 55.6 ± 20.5 pg/mL. During the luteal phase, the high values for progesterone were 35.3 ± 4.4 ng/mL. The presence of vaginal mucus, a reddish vaginal mucosa and the separation of the vulvar lips were verified in all animals during the estrogenic peak. Through ultrasonography, ovarian follicles measuring 0.2±0.1 cm were visualized during the estrogen peak. Corpora lutea presented hyperechoic regions measuring 0.4±0.2 cm identified during luteal phase. No significant differences (P>0.05) between proportions of vaginal epithelial cells were identified when comparing estrogenic and progesterone phases. In conclusion, female collared peccaries, captive born in semiarid conditions, have an estral cycle that lasts 21.0±5.7 days, with estrous signs characterized by vulvar lips edema and hyperemic vaginal mucosa, coinciding with developed follicles and high estrogen levels.
Resumo:
Abstract: Rotaviruses are etiological agents of diarrhea both in humans and in several animal species. Data on avian Group D rotaviruses (RVD) are scarce, especially in Brazil. We detected RVD in 4 pools of intestinal contents of broilers, layer and broiler breeders out of a total of 111 pools from 8 Brazilian states, representing an occurrence of 3.6%, by a specific RVD RT-PCR targeting the VP6 gene. Phylogenetic tree confirmed that the Brazilian strains belong to group D and 3 of the sequences were identical in terms of amino acid whereas one showed 99.5% identity with the others. The sequences described in this study are similar to other sequences previously detected in Brazil, confirming the conserved nature of the VP6 protein.
Resumo:
Abstract: This study aimed to evaluate the efficacy of detection of anti-Aspergillus fumigatus antibodies in captive penguins by double radial agar gel immunodiffusion (AGID) for the aspergillosis diagnosis. We included 134 Magellanic penguins (Spheniscus magellanicus) in rehabilitation at the Center for Recovery of Marine Animals (CRAM / FURG). All of them were monitored by AGID weekly until its final destination (death or release), totalizing 660 serum samples studied. All animals were clinically accompanied and post-mortem examinations was performed in penguins that died during the studied period. A total of 28% (37/134) of the penguins died, 89.2% (33/37) due to aspergillosis, 11% (4/37) by other causes and 97 were released. From the 33 animals with proven aspergillosis, 21 presented anti- A. fumigatus antibodies by AGID, being the average interval between death and positive AGID 16.4 days. Twelve animals with negative serology died of aspergillosis. The sensitivity and specificity rates were 63.6% and 95% respectively, and the positive and negative predictive values were 80.7% and 88.9% respectively. These data demonstrate that the serological monitoring for detection of antibodies by AGID can be an important tool for the diagnosis of aspergillosis in penguins.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
Bioprocess technology is a multidisciplinary industry that combines knowledge of biology and chemistry with process engineering. It is a growing industry because its applications have an important role in the food, pharmaceutical, diagnostics and chemical industries. In addition, the current pressure to decrease our dependence on fossil fuels motivates new, innovative research in the replacement of petrochemical products. Bioprocesses are processes that utilize cells and/or their components in the production of desired products. Bioprocesses are already used to produce fuels and chemicals, especially ethanol and building-block chemicals such as carboxylic acids. In order to enable more efficient, sustainable and economically feasible bioprocesses, the raw materials must be cheap and the bioprocesses must be operated at optimal conditions. It is essential to measure different parameters that provide information about the process conditions and the main critical process parameters including cell density, substrate concentrations and products. In addition to offline analysis methods, online monitoring tools are becoming increasingly important in the optimization of bioprocesses. Capillary electrophoresis (CE) is a versatile analysis technique with no limitations concerning polar solvents, analytes or samples. Its resolution and efficiency are high in optimized methods creating a great potential for rapid detection and quantification. This work demonstrates the potential and possibilities of CE as a versatile bioprocess monitoring tool. As a part of this study a commercial CE device was modified for use as an online analysis tool for automated monitoring. The work describes three offline CE analysis methods for the determination of carboxylic, phenolic and amino acids that are present in bioprocesses, and an online CE analysis method for the monitoring of carboxylic acid production during bioprocesses. The detection methods were indirect and direct UV, and laser-induced frescence. The results of this work can be used for the optimization of bioprocess conditions, for the development of more robust and tolerant microorganisms, and to study the dynamics of bioprocesses.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Remote monitoring of a power boiler allows the supplying company to make sure that equipment is used as supposed to and gives a good chance for process optimization. This improves co-operation between the supplier and the customer and creates an aura of trust that helps securing future contracts. Remote monitoring is already in use with recovery boilers but the goal is to expand especially to biomass-fired BFB-boilers. To make remote monitoring possible, data has to be measured reliably on site and the link between the power plant and supplying company’s server has to work reliably. Data can be gathered either with the supplier’s sensors or with measurements originally installed in the power plant if the plant in question is not originally built by the supplying company. Main goal in remote monitoring is process optimization and avoiding unnecessary accidents. This can be achieved for instance by following the efficiency curves and fouling in different parts of the process and comparing them to past values. The final amount of calculations depends on the amount of data gathered. Sudden changes in efficiency or fouling require further notice and in such a case it’s important that dialogue toward the power plant in question also works.