963 resultados para Molecular structure.
Resumo:
MNDO calculations with complete geometry optimization were used to calculate the interaction between Li+ and C60, C- 60 and C2- 60 molecules. In order to determine the more stable configuration, Li+ was approximated to the C60 molecule or to their reduced forms from 10 Å up to the geometric center of the molecule. From the simulations we determine that Li+ remains close to the surface at 5 Å from the geometric center of the C60 molecules. © 1995.
Resumo:
Thin films were deposited from hexamethyldisiloxane (HMDSO) in a glow discharge supplied with radiofrequency (rf) power. Actino-metric optical emission spectroscopy was used to follow trends in the plasma concentrations of the species SiH (414.2 nm), CH (431.4 nm), CO (520.0 nm), and H (656.3 nm) as a function of the applied rf power (range 5 to 35 W). Transmission infrared spectroscopy (IRS) was employed to characterize the molecular structure of the polymer, showing the presence of Si-H, Si-O-Si, Si-O-C and C-H groups. The deposition rate, determined by optical interferometry, ranged from 60 to 130 nm/min. Optical properties were determined from transmission ultra violet-visible spectroscopy (UVS) data. The absorption coefficient α, the refractive index n, and the optical gap E04 of the polymer films were calculated as a function of the applied power. The refractive index at a photon energy of 1 eV varied from 1.45 to 1.55, depending on the rf power used for the deposition. The absorption coefficient showed an absorption edge similar to other non-crystalline materials, amorphous hydrogenated carbon, and semiconductors. For our samples, we define as an optical gap, the photon energy E04 corresponding to the energy at an absorption of 104 cm-1. The values of E04 decreased from 5.3 to 4.6 as the rf power was increased from 5 to 35 W. © 1995.
Resumo:
The purpose of this work is to study the preparation and spectroscopic behavior of the europium diphenylphosphinate complex -Eu(DPP)3. Elemental and thermogravimetric analysis, powder X-ray diffractometry, and infrared spectroscopy were applied to characterize the formula of the final product and the sixfold coordination of the Eu3+ ion. Excitation and emission spectra have been recorded at liquid nitrogen and room temperatures. The 5D0→7F2 transition intensity decreases when T decreases in comparison to the 5D0→7F1 transition intensity. Molecular mechanic calculations were developed in order to obtain the spatial coordinates of the Eu3+ and ligand ions. The simple overlap model was used to calculate the total splitting of the 5D0→7F1 transition, 5D0→7F0/5D 0→7F2 ntensity ratio and the intensity parameters, Ωλ (λ=2 and 4). Good agreements between theoretical predictions and experimental results have been obtained with g=2/3 as the effective charge and α=0.8×10-24 cm3 as the isotropic polarizability of the oxygen. © 1998 Elsevier Science S.A.