992 resultados para Minimal Process
Resumo:
Composite coatings containing quasicrystalline (QC) phases in Al-Cu-Fe alloys were prepared by laser cladding using a mixture of the elemental powders. Two substrates, namely pure aluminum and an Al-Si alloy were used. The clad layers were remelted at different scanning velocities to alter the growth conditions of different phases. The process parameters were optimized to produce quasicrystalline phases. The evolution of the microstructure in the coating layer was characterized by detailed microstructural investigation. The results indicate presence of quasicrystals in the aluminum substrate. However, only approximant phase could be observed in the substrate of Al-Si alloys. It is shown that there is a significant transport of Si atoms from the substrate to the clad layer during the cladding and remelting process. The hardness profiles of coatings on aluminum substrate indicate a very high hardness. The coating on Al-Si alloy, on the other hand, is ductile and soft. The fracture toughness of the hard coating on aluminum was obtained by nano-indentation technique. The K1C value was found to be 1.33 MPa m1/2 which is typical of brittle materials.
Resumo:
We study the possible effects of CP violation in the Higgs sector on t (t) over bar production at a gammagamma collider. These studies are performed in a model-independent way in terms of six form factors {R(S-gamma), J(S-gamma), R(P-gamma), J(P-gamma), S-t, P-t} which parametrize the CP mixing in the Higgs sector, and a strategy for their determination is developed. We observe that the angular distribution of the decay lepton from t/(t) over bar produced in this process is independent of any CP violation in the tbW vertex and hence best suited for studying CP mixing in the Higgs sector. Analytical expressions are obtained for the angular distribution of leptons in the c.m. frame of the two colliding photons for a general polarization state of the incoming photons. We construct combined asymmetries in the initial state lepton (photon) polarization and the final state lepton charge. They involve CP even (x's) and odd (y's) combinations of the mixing parameters. We study limits up to which the values of x and y, with only two of them allowed to vary at a time, can be probed by measurements of these asymmetries, using circularly polarized photons. We use the numerical values of the asymmetries predicted by various models to discriminate among them. We show that this method can be sensitive to the loop-induced CP violation in the Higgs sector in the minimal supersymmetric standard model.
Resumo:
The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid-base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid-base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to brine about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In data mining, an important goal is to generate an abstraction of the data. Such an abstraction helps in reducing the space and search time requirements of the overall decision making process. Further, it is important that the abstraction is generated from the data with a small number of disk scans. We propose a novel data structure, pattern count tree (PC-tree), that can be built by scanning the database only once. PC-tree is a minimal size complete representation of the data and it can be used to represent dynamic databases with the help of knowledge that is either static or changing. We show that further compactness can be achieved by constructing the PC-tree on segmented patterns. We exploit the flexibility offered by rough sets to realize a rough PC-tree and use it for efficient and effective rough classification. To be consistent with the sizes of the branches of the PC-tree, we use upper and lower approximations of feature sets in a manner different from the conventional rough set theory. We conducted experiments using the proposed classification scheme on a large-scale hand-written digit data set. We use the experimental results to establish the efficacy of the proposed approach. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Acid degradation of 3D zinc phosphates primarily yields a one-dimensional ladder compound, an observation that is significant considering that the latter forms 3D structures on heating in water.
Resumo:
A low power keeper circuit using the concept of rate sensing has been proposed. The proposed technique reduces the amount of short circuit power dissipation in the domino gate by 70% compared to the conventional keeper technique. Also the total power-delay product is 26% lower compared to the previously reported techniques. The process tracking capability of the design enables the domino gate to achieve uniform delay across different process corners. This reduces the amount of short circuit power dissipation that occurs in the cascaded domino gates by 90%. The use of the proposed technique in the read path of a register file reduces the energy requirement by 26% as compared to the other keeper techniques. The proposed technique has been prototyped in 130nm CMOS technology.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices,we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: 1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, 2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which 3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time),based on the sensor observations obtained until time slot k.Our results show that an optimum closed loop control onMk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. The research work presented here is based on the processes of synthesizing multiple state mechanical devices carried out individually by ten engineering designers. The designers are asked to think aloud, while carrying out the synthesis. The ten design synthesis processes are video recorded, and the records are transcribed and coded for identifying activities occurring in the synthesis processes, as well as for identifying the inputs to and outputs from the activities. A mathematical representation for specifying multi-state design task is proposed. Further, a descriptive model capturing all the ten synthesis processes is developed and presented in this paper. This will be used to identify the outstanding issues to be resolved before a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives could be developed.
Resumo:
An attempt has been made to experimentally investigate the fracture process zone (FPZ) using Acoustic Emission (AE) method in High Strength Concrete (HSC) beams subjected to monotonically increasing load. Stress waves are released during the fracture process in materials, which cause acoustic emissions. AE energy released during the fracture of notched HSC beam specimens during Three Point Bend (TPB) tests is measured and is used to investigate the FPZ in the notched HSC beams having 28-day compressive strength of 78.0 MPa. The specimens are tested by Material Testing System (MTS) of 1200 KN capacity employing Crack Mouth Opening Displacement (CMOD) control at the rate of 0.0004 mmlsec in accordance with RILEM recommendations. A brief review on AE technique applied to concrete fracture is presented. The fracture process zone developed and the AE energy released during the fracture process in high strength concrete beam specimens are presented and discussed. It was observed that AE events containing higher energy are located around the notch tip. It may be possible to relate AE energy to fracture energy of concrete.
Resumo:
Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as Tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process in terms of installment cost is in between tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-ε turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the mixing process of the bath significantly.