994 resultados para Micro-structural


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the trabecular bone score (TBS) measure. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis values, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goal of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. We included 631 women: mean age 67.4 ± 6.7 years, BMI 26.1 ± 4.6, mean lumbar spine BMD 0.943 ± 0.168 (T-score − 1.4 SD), and TBS 1.271 ± 0.103. As expected, correlation between BMD and site matched TBS is low (r2 = 0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2-2.5), 1.6 (1.2-2.1), and 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), and 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < − 2.5 SD or a TBS < 1.200. If we combine a BMD < − 2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been misclassified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS and HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to assess the clinical performance of the model combining areal bone mineral density (aBMD) at spine and microarchitecural texture (TBS) for the detection of the osteoporotic fracture. The Eastern European Study is a multicenter study (Serbia, Bulgaria, Romania and Ukraine) evaluating the role of TBS in routine clinical practice as a complement to aBMD. All scans were acquired on Hologic Discovery and GE Prodigy densitometers in a routine clinical manner. The additional clinical values of aBMD and TBS were analyzed using a two steps classification tree approach (aBMD followed by TBS tertiles) for all type of osteoporotic fracture (All-OP Fx). Sensitivity, specificity and accuracy of fracture detection as well as the Net Reclassification Index (NRI) were calculated. This study involves 1031 women subjects aged 45 and older recruited in east European countries. Clinical centers were cross-calibrated in terms of BMD and TBS. As expected, areal BMD (aBMD) at spine and TBS were only moderately correlated (r (2) = 0.19). Prevalence rate for All-OP Fx was 26 %. Subjects with fracture have significant lower TBS and aBMD than subjects without fracture (p < 0.01). TBS remains associated with the fracture even after adjustment for age and aBMD with an OR of 1.27 [1.07-1.51]. When using aBMD T-score of -2.5 and the lowest TBS tertile thresholds, both BMD and TBS were similar in terms of sensitivity (35 vs. 39 %), specificity (78 vs. 80 %) and accuracy (64 vs. 66 %). aBMD and TBS combination, induced a significant improvement in sensitivity (+28 %) and accuracy (+17 %) compared to aBMD alone whereas a moderate improvement was observed in terms of specificity (+9 %). The overall combination gain was 36 % as expressed using the NRI. aBMD and TBS combination decrease significantly the number of subjects needed to diagnose from 7 for aBMD alone to 2. In a multi-centre Eastern European cohort, we have shown that the use of TBS in addition to the aBMD permit to reclassified correctly more than one-third of the overall subjects. Furthermore, the number of subjects needed to diagnose fell to 2 subjects. Economical studies have to be performed to evaluate the gain induced by the use of TBS for the healthcare system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homology modeling is the most commonly used technique to build a three-dimensional model for a protein sequence. It heavily relies on the quality of the sequence alignment between the protein to model and related proteins with a known three dimensional structure. Alignment quality can be assessed according to the physico-chemical properties of the three dimensional models it produces.In this work, we introduce fifteen predictors designed to evaluate the properties of the models obtained for various alignments. They consist of an energy value obtained from different force fields (CHARMM, ProsaII or ANOLEA) computed on residue selected around misaligned regions. These predictors were evaluated on ten challenging test cases. For each target, all possible ungapped alignments are generated and their corresponding models are computed and evaluated.The best predictor, retrieving the structural alignment for 9 out of 10 test cases, is based on the ANOLEA atomistic mean force potential and takes into account residues around misaligned secondary structure elements. The performance of the other predictors is significantly lower. This work shows that substantial improvement in local alignments can be obtained by careful assessment of the local structure of the resulting models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks-including their spatial statistics and their persistence across time-can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les approches multimodales dans l'imagerie cérébrale non invasive sont de plus en plus considérées comme un outil indispensable pour la compréhension des différents aspects de la structure et de la fonction cérébrale. Grâce aux progrès des techniques d'acquisition des images de Resonance Magnetique et aux nouveaux outils pour le traitement des données, il est désormais possible de mesurer plusieurs paramètres sensibles aux différentes caractéristiques des tissues cérébraux. Ces progrès permettent, par exemple, d'étudier les substrats anatomiques qui sont à la base des processus cognitifs ou de discerner au niveau purement structurel les phénomènes dégénératifs et développementaux. Cette thèse met en évidence l'importance de l'utilisation d'une approche multimodale pour étudier les différents aspects de la dynamique cérébrale grâce à l'application de cette approche à deux études cliniques: l'évaluation structurelle et fonctionnelle des effets aigus du cannabis fumé chez des consommateurs réguliers et occasionnels, et l'évaluation de l'intégrité de la substance grise et blanche chez des jeunes porteurs de la prémutations du gène FMR1 à risque de développer le FXTAS (Fragile-X Tremor Ataxia Syndrome). Nous avons montré que chez les fumeurs occasionnels de cannabis, même à faible concentration du principal composant psychoactif (THC) dans le sang, la performance lors d'une tâche visuo-motrice est fortement diminuée, et qu'il y a des changements dans l'activité des trois réseaux cérébraux impliqués dans les processus cognitifs: le réseau de saillance, le réseau du contrôle exécutif, et le réseau actif par défaut (Default Mode). Les sujets ne sont pas en mesure de saisir les saillances dans l'environnement et de focaliser leur attention sur la tâche. L'augmentation de la réponse hémodynamique dans le cortex cingulaire antérieur suggère une augmentation de l'activité introspective. Une investigation des ef¬fets au niveau cérébral d'une exposition prolongée au cannabis, montre des changements persistants de la substance grise dans les régions associées à la mémoire et au traitement des émotions. Le niveau d'atrophie dans ces structures corrèle avec la consommation de cannabis au cours des trois mois précédant l'étude. Dans la deuxième étude, nous démontrons des altérations structurelles des décennies avant l'apparition du syndrome FXTAS chez des sujets jeunes, asymptomatiques, et porteurs de la prémutation du gène FMR1. Les modifications trouvées peuvent être liées à deux mécanismes différents. Les altérations dans le réseau moteur du cervelet et dans la fimbria de l'hippocampe, suggèrent un effet développemental de la prémutation. Elles incluent aussi une atrophie de la substance grise du lobule VI du cervelet et l'altération des propriétés tissulaires de la substance blanche des projections afférentes correspondantes aux pédoncules cérébelleux moyens. Les lésions diffuses de la substance blanche cérébrale peu¬vent être un marquer précoce du développement de la maladie, car elles sont liées à un phénomène dégénératif qui précède l'apparition des symptômes du FXTAS. - Multimodal brain imaging is becoming a leading tool for understanding different aspects of brain structure and function. Thanks to the advances in Magnetic Resonance imaging (MRI) acquisition schemes and data processing techniques, it is now possible to measure different parameters sensitive to different tissue characteristics. This allows for example to investigate anatomical substrates underlying cognitive processing, or to disentangle, at a pure structural level degeneration and developmental processes. This thesis highlights the importance of using a multimodal approach for investigating different aspects of brain dynamics by applying this approach to two clinical studies: functional and structural assessment of the acute effects of cannabis smoking in regular and occasional users, and grey and white matter assessment in young FMR1 premutation carriers at risk of developing FXTAS. We demonstrate that in occasional smokers cannabis smoking, even at low concentration of the main psychoactive component (THC) in the blood, strongly decrease subjects' performance on a visuo-motor tracking task, and globally alters the activity of the three brain networks involved in cognitive processing: the Salience, the Control Executive, and the Default Mode networks. Subjects are unable to capture saliences in the environment and to orient attention to the task; the increase in Hemodynamic Response in the Anterior Cingulate Cortex suggests an increase in self-oriented mental activity. A further investigation on long term exposure to cannabis, shows a persistent grey matter modification in brain regions associated with memory and affective processing. The degree of atrophy in these structures also correlates with the estimation of drug use in the three months prior the participation to the study. In the second study we demonstrate structural changes in young asymptomatic premutation carriers decades before the onset of FXTAS that might be related to two different mechanisms. Alteration of the cerebellar motor network and of the hippocampal fimbria/ fornix, may reflect a potential neurodevelopmental effect of the premutation. These include grey matter atrophy in lobule VI and modification of white matter tissue property in the corresponding afferent projections through the Middle Cerebellar Peduncles. Diffuse hemispheric white matter lesions that seem to appear closer to the onset of FXTAS and be related to a neurodegenerative phenomenon may mark the imminent onset of FXTAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging the connectome in vivo has become feasible through the integration of several rapidly developing fields of science and engineering, namely magnetic resonance imaging and in particular diffusion MRI on one side, image processing and network theory on the other side. This framework brings in vivo brain imaging closer to the real topology of the brain, contributing to narrow the existing gap between our understanding of brain structural organization on one side and of human behavior and cognition on the other side. Given the seminal technical progresses achieved in the last few years, it may be ready to tackle even greater challenges, namely exploring disease mechanisms. In this review we analyze the current situation from the technical and biological perspectives. First, we critically review the technical solutions proposed in the literature to perform clinical studies. We analyze for each step (i.e. MRI acquisition, network building and network statistical analysis) the advantages and potential limitations. In the second part we review the current literature available on a selected subset of diseases, namely, dementia, schizophrenia, multiple sclerosis and others, and try to extract for each disease the common findings and main differences between reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barmumycin was isolated from an extract of the marine actinomycete Streptomyces sp. BOSC-022A and found to be cytotoxic against various human tumor cell lines. Based on preliminary one- and two-dimensional 1H- and 13C-NMR spectra, the natural compound was initially assigned the structure of macrolactone-type compound 1, which was later prepared by two different routes. However, major spectroscopic differences between isolated barmumycin and 1 led to revision of the proposed structure as E-16. Based on synthesis of this new compound, and subsequent spectroscopic comparison of it to an authentic sample of barmumycin, the structure of the natural compound was indeed confirmed as that of E-16.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: « Osteo-Mobile Vaud » is a mobile osteoporosis (OP) screening program. The women > 60 years living in the region Vaud will be offered OP screening with new equipment installed in a bus. The main goal is to evaluate the fracture risk with the combination of clinical risk factors (CRF) and informations extracted by a single DXA: bone mineral density (BMD), vertebral fracture assessment (VFA), and micro-architecture (MA) evaluation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone MA based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. A 55-years follow- up is planned. Method: The Osteo-Mobile Vaud cohort (1500 women, > 60 years, living in the region Vaud) started in July 2010. CRF for OP, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded. Preliminary results are reported. Results: In July 31th, we evaluated 510 women: mean age 67 years, BMI 26 kg/m². 72 women had one or more fragility fractures, 39 had vertebral fracture (VFx) grade 2/3. TBS decreases with age (-0.005 / year, p<0.001), and with BMI (-0.011 per kg/m², p<0.001). Correlation between BMD and site matched TBS is low (r=0.4, p<0.001). For the lowest T-score BMD, odds ratio (OR, 95% CI) for VFx grade 2/3 and clinical OP Fx are 1.8 (1.1-2.9) and 2.3 (1.5-3.4). For TBS, age-, BMI- and BMD adjusted ORs (per SD decrease) for VFx grade 2/3 and clinical OP Fx are 1.9 (1.2-3.0) and 1.8 (1.2-2.7). The TBS added value was independent of lumbar spine BMD or the lowest T-score (femoral neck, total hip or lumbar spine). Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS and BMD may increase significantly the identification of women with prevalent OP Fx. For the first time we are able to have complementary information about fracture (VFA), density (BMD), and micro-architecture (TBS) from a simple, low ionizing radiation and cheap device: DXA. The value of such informations in a screening program will be evaluated.