999 resultados para MATRIX-ENSEMBLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

matrix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animation that rains down appropriate words relating to qualitative research

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Registro con código de documento duplicado y modificado posteriormente

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye anexos y un apéndice didáctico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presenta un estudio sobre los criterios metodológicos, estrategias y actividades que deben adoptarse en las modalidades formativas semipresenciales, para determinar las claves que garantizan la eficacia de la docencia apoyada en entornos virtuales. Se aportan orientaciones básicas que facilitan al profesorado universitario, en el marco del nuevo Espacio Europeo de Educación Superior, la creación de los complementos virtuales en sus asignaturas presenciales y la formulación de e-actividades para el desarrollo de competencias genéricas. El contenido se estructura en dos partes: en la primera se describe el proyecto MATRIX, el entorno virtual creado para él y las asignaturas implicadas en el proyecto. En una segunda parte se analizan los resultados obtenidos, los datos cuantitativos y cualitativos y los indicadores de calidad derivados de los resultados obtenidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monográfico con el título: 'Web 2.0 : dispositivos móviles y abiertos para el aprendizaje'. Resumen basado en el de la publicación

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic Nutrient Export Risk Matrix (NERM) approach is presented. This provides advice to farmers and policy makers on good practice for reducing nutrient loss and is intended to persuade them to implement such measures. Combined with a range of nutrient transport modelling tools and field experiments, NERMs can play an important role in reducing nutrient export from agricultural land. The Phosphorus Export Risk Matrix (PERM) is presented as an example NERM. The PERM integrates hydrological understanding of runoff with a number of agronomic and policy factors into a clear problem-solving framework. This allows farmers and policy makers to visualise strategies for reducing phosphorus loss through proactive land management. The risk Of Pollution is assessed by a series of informed questions relating to farming intensity and practice. This information is combined with the concept of runoff management to point towards simple, practical remedial strategies which do not compromise farmers' ability to obtain sound economic returns from their crop and livestock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensemble predictions are being used more frequently to model the propagation of uncertainty through complex, coupled meteorological, hydrological and coastal models, with the goal of better characterising flood risk. In this paper, we consider the issues that we judge to be important when designing and evaluating ensemble predictions, and make recommendations for the guidance of future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.