1000 resultados para M-mode Echocardiography
Resumo:
The nonlinear amplitude modulation dynamics of electrostatic oscillations of massive charged defects in a three-component pair plasma is investigated; i.e. doped pair-ion plasmas (anticipating the injection of a massive charged component in the background; e.g. in fullerene experiments). Ton-acoustic oscillations in electron-positron-ion (e-p-i) plasmas are also covered, in the appropriate limit. Linear and nonlinear effects (MI, envelope modes) are discussed. The role of the temperature and density ratio between the pair species is stressed.
Resumo:
We present a detailed analysis of time-resolved optical spectra of the ZZ Ceti white dwarf, HS 0507+0434B. Using the wavelength dependence of observed mode amplitudes, we deduce the spherical degree, l, of the modes, most of which have l = 1. The presence of a large number of combination frequencies (linear sums or differences of the real modes) enabled us not only to test theoretical predictions but also to indirectly infer spherical and azimuthal degrees of real modes that had no observed splittings. In addition to the above, we measure line-of-sight velocities from our spectra. We find only marginal evidence for periodic modulation associated with the pulsation modes: at the frequency of the strongest mode in the lightcurve, we measure an amplitude of 2.6 +/- 1.0 kms(-1), which has a probability of 2% of being due to chance; for the other modes, we find lower values. Our velocity amplitudes and upper limits are smaller by a factor of two compared to the amplitudes found in ZZ Psc. We find that this is consistent with expectations based on the position of HS 0507+0434B in the instability strip. Combining all the available information from data such as ours is a first step towards constraining atmospheric properties in a convectionally unstable environment from an observational perspective.
Resumo:
Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The temporal development of laser driven single mode perturbations in thin A1 foils has been measured using extreme ultraviolet (XUV) laser radiography. 15, 30, 70 and 90 mu m single modes were imprinted on 2 mu m thick A1 foils with an optical driver laser at 527 nm for intensities in the range 5 x 10(12) to 1.5 x 10(13) W cm(-2). The magnitude of the imprinted perturbation at the time of shock break out was determined by fitting to the data estimated curves of growth of the Rayleigh-Taylor instability after shock break out. The efficiency of imprinting is independent of perturbation wavelength in the parameter range of this experiment, suggesting little influence of thermal conduction smoothing. The results are of interest for directly driven inertially confined fusion. (C) 1998 American Institute of Physics.
Resumo:
Monochloroacetic acid crystals and 60% salicylic acid ointment was found to be more effective than placebo as a treatment for simple plantar warts in a double blind study on 57 patients. Nineteen (66%) patients in the active treatment group compared with five (18%) patients in the placebo group were cured after 6 weeks (P = 0.002). The active treatment was associated with a significantly higher cure rate 6 months after entry (P = 0.04). Treatments were well tolerated. IgG or IgM antibodies or both to human papilloma virus (HPV) types 1 or 2 or both were detected significantly more frequently in the actively treated group 6 weeks after entry (P = 0.0005). Twelve (50%) patients considered to be cured had no detectable secondary immune response. Our results suggest that cure does not depend primarily on the humoral system but rather on mechanical destruction of wart tissue, or occurs as a result of cell mediated immunity.
Resumo:
Numerous studies have shown that postbuckling stiffened panels may undergo abrupt changes in buckled mode
shape when loaded in uniaxial compression. This phenomenon is often referred to as a mode jump or secondary
instability. The resulting sudden release of stored energy may initiate damage in vulnerable regions within a
structure, for example, at the skin-stiffener interface of a stiffened composite panel. Current design practice is to
remove a mode jump by increasing the skin thickness of the postbuckling region. A layup optimization methodology,
based on a genetic algorithm, is presented, which delays the onset of secondary instabilities in a composite structure
while maintaining a constant weight and subject to a number of design constraints. A finite element model was
developed of a stiffened panel’s skin bay, which exhibited secondary instabilities. An automated numerical routine
extracted information directly from the finite element displacement results to detect the onset of initial buckling and
secondary instabilities. This routine was linked to the genetic algorithm to find a revised layup for the skin bay, within
appropriate design constraints, to delay the onset of secondary instabilities. The layup optimization methodology,
resulted in a panel that had a higher buckling load, prebuckling stiffness, and secondary instability load than the
baseline design.
Resumo:
This paper addresses the analytical solution of the mixed-mode bending (MMB) problem. The first published solutions used a load separation in pure mode I and mode II and were applied for a crack length less than the beam half-span, a <= L. In later publications, the same mode separation was used in deriving the analytical solution for crack lengths bigger than the beam half-span, a > L. In this paper it is shown that this mode separation is not valid when a > L and in some cases may lead to very erroneous results. The correct mode separation and the corresponding analytical solutions, when a > L, are presented. Results, of force vs. displacement and force vs. crack length graphs, obtained using the existing formulation and the corrected formulation are compared. A finite element solution, which does not use mode separation, is also presented