978 resultados para LeBaron, Inc.
Resumo:
Considering the increasing popularity of network-based control systems and the huge adoption of IP networks (such as the Internet), this paper studies the influence of network quality of service (QoS) parameters over quality of control parameters. An example of a control loop is implemented using two LonWorks networks (CEA-709.1) interconnected by an emulated IP network, in which important QoS parameters such as delay and delay jitter can be completely controlled. Mathematical definitions are provided according to the literature, and the results of the network-based control loop experiment are presented and discussed.
Resumo:
Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.
Resumo:
The continuous growth of peer-to-peer networks has made them responsible for a considerable portion of the current Internet traffic. For this reason, improvements in P2P network resources usage are of central importance. One effective approach for addressing this issue is the deployment of locality algorithms, which allow the system to optimize the peers` selection policy for different network situations and, thus, maximize performance. To date, several locality algorithms have been proposed for use in P2P networks. However, they usually adopt heterogeneous criteria for measuring the proximity between peers, which hinders a coherent comparison between the different solutions. In this paper, we develop a thoroughly review of popular locality algorithms, based on three main characteristics: the adopted network architecture, distance metric, and resulting peer selection algorithm. As result of this study, we propose a novel and generic taxonomy for locality algorithms in peer-to-peer networks, aiming to enable a better and more coherent evaluation of any individual locality algorithm.
Resumo:
The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.
Resumo:
This paper presents results of research related to multicriteria decision making under information uncertainty. The Bell-man-Zadeh approach to decision making in a fuzzy environment is utilized for analyzing multicriteria optimization models (< X, M > models) under deterministic information. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. This circumstance permits one to generalize the classic approach to considering the uncertainty of quantitative information (based on constructing and analyzing payoff matrices reflecting effects which can be obtained for different combinations of solution alternatives and the so-called states of nature) in monocriteria decision making to multicriteria problems. Considering that the uncertainty of information can produce considerable decision uncertainty regions, the resolving capacity of this generalization does not always permit one to obtain unique solutions. Taking this into account, a proposed general scheme of multicriteria decision making under information uncertainty also includes the construction and analysis of the so-called < X, R > models (which contain fuzzy preference relations as criteria of optimality) as a means for the subsequent contraction of the decision uncertainty regions. The paper results are of a universal character and are illustrated by a simple example. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.
Resumo:
Video adaptation is an extensively explored content providing technique aimed at appropriately suiting several usage scenarios featured by different network requirements and constraints, user`s terminal and preferences. However, its usage in high-demand video distribution systems, such as CNDs, has been badly approached, ignoring several aspects of optimization of network use. To address such deficiencies, this paper presents an approach for implementing the adaptation service by exploring the concept of overlay services networks. As a result of demonstrate the benefits of this proposal, it is made a comparison of this proposed adaptation service with other strategies of video adaptation.
Resumo:
This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.
Resumo:
This paper contains a new proposal for the definition of the fundamental operation of query under the Adaptive Formalism, one capable of locating functional nuclei from descriptions of their semantics. To demonstrate the method`s applicability, an implementation of the query procedure constrained to a specific class of devices is shown, and its asymptotic computational complexity is discussed.
Resumo:
This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.
Resumo:
This paper proposes a simple high-level programming language, endowed with resources that help encoding self-modifying programs. With this purpose, a conventional imperative language syntax (not explicitly stated in this paper) is incremented with special commands and statements forming an adaptive layer specially designed with focus on the dynamical changes to be applied to the code at run-time. The resulting language allows programmers to easily specify dynamic changes to their own program`s code. Such a language succeeds to allow programmers to effortless describe the dynamic logic of their adaptive applications. In this paper, we describe the most important aspects of the design and implementation of such a language. A small example is finally presented for illustration purposes.
Resumo:
In this paper, a novel adaptive strategy to obtain technically justified fault-ride-through requirements for wind turbines (WTs) is proposed. The main objective is to promote an effective integration of wind turbines into power systems with still low penetration levels of wind power based on technical and economical considerations. The level of requirement imposed by the strategy is increased stepwise over time, depending on system characteristics and on wind power penetration level. The idea behind is to introduce stringent requirements only when they are technically needed for a reliable and secure power system operation. Voltage stability support and fault-ride-through requirements are considered in the strategy. Simulations are based on the Chilean transmission network, a midsize isolated power system with still low penetration levels of wind power. Simulations include fixed speed induction generators and doubly fed induction generators. The effects on power system stability of the wind power injections, integrated into the network by adopting the adaptive strategy, are compared with the effects that have the same installed capacity of wind power but only considering WTs able to fulfill stringent requirements (fault-ride-through capability and support voltage stability). Based on simulations and international experience, technically justified requirements for the Chilean case are proposed.
Resumo:
In this paper, a comparative analysis of the long-term electric power forecasting methodologies used in some South American countries, is presented. The purpose of this study is to compare and observe if such methodologies have some similarities, and also examine the behavior of the results when they are applied to the Brazilian electric market. The abovementioned power forecasts were performed regarding the main four consumption classes (residential, industrial, commercial and rural) which are responsible for approximately 90% of the national consumption. The tool used in this analysis was the SAS (c) program. The outcome of this study allowed identifying various methodological similarities, mainly those related to the econometric variables used by these methods. This fact strongly conditioned the comparative results obtained.