988 resultados para Indicators of soil quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth, reproduction and biochemical composition were analyzed for the copepod Argyrodiaptomus furcatus fed on the alga Ankistrodesmus gracilis grown in different media. The ingestion of this copepod by larvae of two species of tropical fishes was also evaluated. The mean peak density of the copepod population was 1369 individuals 1-1 for all four diets used, and the highest was 1387 individuals 1-1 on diet ARV (algae + ration + vitamins). A small copepod, A. furcatus tends to have a short life span. The smallest females did not attain maturity in the shortest time on all diets used. Food quality may play a major role in the dynamics of the biochemical composition of this copepod. Argyrodiaptomus furcatus was a more important food item for larvae of tambaqui (Colossoma macropomum) than of pacu (Piaractus mesopotamicus). However, it made up a large part of the gut contents of larvae of both species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rain acidity may be ascribed to emissions from power station stacks, as well as emissions from other industry, biomass burning, maritime influences, agricultural influences, etc. Rain quality data are available for 30 sites in the South African interior, some from as early as 1985 for up to 14 rainfall seasons, while others only have relatively short records. The article examines trends over time in the raw and volume weighted concentrations of the parameters measured, separately for each of the sites for which sufficient data are available. The main thrust, however, is to examine the inter-relationship structure between the concentrations within each rain event (unweighted data), separately for each site, and to examine whether these inter-relationships have changed over time. The rain events at individual sites can be characterized by approximately eight combinations of rainfall parameters (or rain composition signatures), and these are common to all sites. Some sites will have more events from one signature than another, but there appear to be no signatures unique to a single site. Analysis via factor and cluster analysis, with a correspondence analysis of the results, also aid interpretation of the patterns. This spatio-temporal analysis, performed by pooling all rain event data, irrespective of site or time period, results in nine combinations of rainfall parameters being sufficient to characterize the rain events. The sites and rainfall seasons show patterns in these combinations of parameters, with some combinations appearing more frequently during certain rainfall seasons. In particular, the presence of the combination of low acetate and formate with high magnesium appears to be increasing in the later rainfall seasons, as does this combination together with calcium, sodium, chloride, potassium and fluoride. As expected, sites close together exhibit similar signatures. Copyright © 2002 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the important issues about using renewable energy is the integration of dispersed generation in the distribution networks. Previous experience has shown that the integration of dispersed generation can improve voltage profile in the network, decrease loss etc. but can create safety and technical problems as well, This work report the application of the instantaneous space phasors and the instantaneous complex power in observing performances of the distribution networks with dispersed generators in steady state. New IEEE apparent power definition, the so called Buccholz-Goodhue apparent power, as well as new proposed power quality (oscillation) index in the three-phase distribution systems with unbalanced loads and dispersed generators, are applied. Results obtained from several case studies using IEEE 34 nodes test network are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil management measures that increase the efficiency of organic matter cycling and maintain favorable soil structure are needed for improving soil quality. On the other hand, soil structure degradation due to inadequate soil management systems is widespread. Among the indicators of soil physical quality, saturated hydraulic conductivity and penetration resistance are thought to be sensitive to soil management system. The aim of this work was to study the influence of soil tillage system and organic fertilization on selected soil physical properties after the first year of treatment. The field work was conducted in Selviria, MS, Brazil on an Oxisol. The experimental design was randomized complete blocks with split-plots, with 12 treatments and 4 repetitions. Tillage treatments included conventional ploughing (CT) and direct drilling (DD). Fertilizer treatments were: 1) manure, 2) manure plus mineral, 3) traditional mineral 4) plant residues of Crotalaria juncea, 5) plant residues of Pennisetum americanum and 6) control plot. The plots were cropped to bean in winter and to cotton in summer, and both cultures were irrigated. After one year no significant differences between treatments in mechanical resistance and porosity were found. However, saturated hydraulic conductivity and infiltration were higher in the conventional tillage treatment at the 0.00-0.10 m depth. Moreover, an improvement in soil physical condition by organic fertilizers was shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil and subsoil pollution is not only significant in terms of environmental loss, but also a matter of environmental and public health. Solid, liquid and gaseous residues are the major soil contamination agents. They originate from urban conglomerates and industrial areas in which it is impossible to emphasize the chemical, petrochemical and textile industry; thermoelectric, mining, and ironmaster activities. The contamination process can thus be defined as a compound addition to soil, from what qualitative and or quantitative manners can modify soil's natural characteristics and use, producing baneful and deteriorative effects on human health. Studies have shown that human exposition to high concentration of some heavy metals found on soil can cause serious health problems, such as pulmonary or kidney complications, liver and nervous system harm, allergy, and the chronic exposition that leads to death. The present study searches for the correlation among soil contamination, done through a geochemical baseline survey of an industrial contamination area on the shoreline of Sao Paulo state. The study will be conducted by spatial analysis using Geographical Information Systems for mapping and regression analysis. The used data are 123 soil samples of percentage concentration of heavy metals. They were sampled and spatially distributed by geostatistics methods. To verify if there is a relation between heavy metals soil pollution and morbidity an executed correlation and regression analysis will be done using the pollution registers as the independent variables and morbidity as dependable variables. It is expected, by the end of the study, to identify the areas relation between heavy metals soil pollution and morbidity, moreover to be able to provide assistance in terms of new methodologies that could facilitate soil pollution control programs and public health planning. © 2010 WIT Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil-transmitted helminths (STHs) form one of the most important groups of infectious agents and are the cause of serious global health problems. The most important STHs are roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms (Necator americanus or Ancylostoma duodenale); on a global level, more than a billion people have been infected by at least one species of this group of pathogens. This review explores the general concepts of transmission dynamics and the environment and intensity of infection and morbidity of STHs. The global strategy for the control of soil-transmitted helminthiasis is based on (i) regular anthelminthic treatment, (ii) health education, (iii) sanitation and personal hygiene and (iv) other means of prevention with vaccines and remote sensoring. The reasons for the development of a control strategy based on population intervention rather than on individual treatment are discussed, as well as the costs of the prevention of STHs, although these cannot always be calculated because interventions in health education are difficult to measure. An efficient sanitation infrastructure can reduce the morbidity of STHs and eliminates the underlying cause of most poverty-related diseases and thus supports the economic development of a country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correct classification of sugar according to its physico-chemical characteristics directly influences the value of the product and its acceptance by the market. This study shows that using an electronic tongue system along with established techniques of supervised learning leads to the correct classification of sugar samples according to their qualities. In this paper, we offer two new real, public and non-encoded sugar datasets whose attributes were automatically collected using an electronic tongue, with and without pH controlling. Moreover, we compare the performance achieved by several established machine learning methods. Our experiments were diligently designed to ensure statistically sound results and they indicate that k-nearest neighbors method outperforms other evaluated classifiers and, hence, it can be used as a good baseline for further comparison. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the its design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient (VC) is not equal to production variation coefficient in the operational unit; d) the difference between the discharge variation coefficient and the productivity variation coefficient depends on the water depth applied. This study aimed to evaluate the relationship between EU used in the irrigation system design and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index proposed by Barragan. The emitter variation coefficient was always lower than the productivity variation coefficient. To obtain uniformity of production, it is necessary to consider the irrigation system uniformity and mainly the water depth to be applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography