998 resultados para Hypoglycaemic Effect
Resumo:
Abstract is not available.
Resumo:
Thermal decomposition of powdered ammonium perchlorate, catalysed by manganese dioxide (MnO2), has been studied in the low concentration ranges of the catalyst. MnO2 sensitises the thermal decomposition of ammonium perchlorate. The activation energy estimations of catalysed ammonium perchlorate show that the value is about 30 kcal/mol throughout the low and the high temperature regions whereas uncatalysed ammonium perchlorate gives two activation energies, 20 kcal/mol in the low temperature region (280-320°C) and 60 kcal/mol in the higher temperature region (350-390°C). This behaviour has been explained on the basis of an electron transfer process. The effectiveness of MnO2 in the thermal decomposition further increases on pre-heating the sample at 50°C for two weeks; manganese ions enter the ammonium perchlorate lattice during the process of pre-heating.
Resumo:
Ageing behaviour of polystyrene (PS)/ammonium perchlorate (AP) propellent leading to ballistic changes has been studied. It follows a zero-order kinetic law. Ageing behaviour leading to change in burning rate ( ) in the temperature range of 60–200 ° C was found to remain the same. The dependence of the change of the average thermal decomposition (TD) rate at 230 and 260°C on the change in burning rate for the propellant aged at 100 ° C in air suggests that the slow TD of the propellant is the cause of ageing. The safe-life (for a pre-assigned burning-rate change limit) at 25 ° C in air has been calculated as a function of the rate of change.
Resumo:
The effects of pretreatments on the sublimation of pure ammonium perchlorate (AP) were studied by differential thermal analysis. The addition of inorganic salts (doping), or preheating, lead to desensitisation of the sublimation process, whereas it was sensitised by precompression. Sublimation increased with decrease in the particle size of the AP from 500 to 200 microns, but decreased with a further decrease in size from 200 to 100 microns. The results are interpreted in terms of gross imperfections and strain in the AP crystals.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.
Resumo:
The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.
Resumo:
Abstract is not available.
Resumo:
Efect of concentrated force or edge dislocation with Burger's vector on a line crack in di,aimilar media has been studied in this paper. Crack surfaces may be subjected to surface loads or opuwd by rigid inclusions. Complex variable methods have been employed to study the distribution of stresses and displacements every where and in particnlar at the tips of the crack.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.
Resumo:
The V-I characteristic of a p-n junction under breakdown is calculated taking the thermally generated carriers into account. The current density distributions computed under different conditions have been given. The light emission and other characteristics reported by Chiang and Lauritzen and others have been explained.
Effect of the method of preparation and pretreatment on the texture of alumina and related catalysts
Resumo:
The effect of the method of preparation and pretreatment on catalyst texture was investigated in the case of alumina, silica-alumina, 10 × molecular sieve and thoria catalysts. All the catalysts were characterised with respect to their specific surface area, surface acidity, pore size distribution and pore volume. The above properties were found to reflect the textural changes that might have been undergone by the catalyst surface as a result of the method of preparation and pretreatment. The method of preparation was found to influence markedly the acidity of the surface and to a lesser extent the surface area and pore size distribution. Acid-treatment was found to increase selectively the acidity of the catalyst while heat-treatment was found to decrease proportionally the acidity as well as surface area of the catalyst.
Resumo:
The effect of pH and metal ions (Cu2+, Zn2+, Cd2+, Mn2+, Cr3+, Co3+, and Mg2+) on the decyclization reactions of pyridoxal-histamine cyclized Schiff base has been studied using electronic spectroscopy. The study reveals that the cyclization reaction is irreversible with respect to pH and metal ions. Interest in this work derives from the possible involvement of cyclization reactions in the inhibitory activity of a number of pyridoxal-dependent enzymes.