965 resultados para Hydrographic basins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of dynamical mechanism of hydrocarbon secondary migration is the key research project of China Petroleum and Chemical Corporation in the ninth "Five-Year Plan", and this research is the hot and difficult spot and frontline in the domain of reservoir forming study in recent years. It is a common recognition that the dynamical mechanism of hydrocarbon's secondary migration is the important factor to control the reservoir type, distribution and oil/gas abundance. Therefore, to study this mechanism and establish the modes of hydrocarbon's migration and accumulation in different reservoirs under different conditions are of great theoretical meaningfulness and practical value on both developing the theory and method of hydrocarbon migration/accumulation dynamics in terrestrial rift-subsidence lacustrine basins and guiding the exploration and production. A laboratory for physical simulation of hydrocarbon's secondary migration/accumulation mechanism has been build up. 12 types of physical simulation tests to determine the volume of oil/gas migration and accumulation within these 3 series of plentiful hydrocarbon sources, different hydrocarbon abundance and pore level have been carried out under the guide of multidisciplinary theories, applying various methods and techniques, and 24 migration/accumulation modes have been established. The innovative results and recognition are as follows: 1, The oil/gas migration and accumulation modes for sandstones of moderate, fine grain size and silt in these six paleo depositional environments of shallow lake, fluvial, lacustrine, fluvial-deltaic, turbidite-delta, and salty-semi salty lake have been established. A new view has been put forward that the oil/gas volumetric increment during their migration and accumulation in different porous media of different rocks has similar features and evolution history. 2. During oil/gas migration and accumulation in different grain-sized porous media or different reservoirs, all the volumetric increment had experienced three period of rapid increasing, balanced and slower increasing and limited increasing. The dynamical process of oil/gas secondary migration and accumulation has been expounded. 3 The two new concepts of "source supply abundance" and "source supply intensity" have been proposed for the first time, and the physical simulation for hydrocarbon's migration, accumulation and forming a reservoir has been realized. 4, Source supply abundance is the important factor to control the accumulated volume of oil phase in the porous media. It is impossible to accumulate large amount of hydrocarbon volume in an open boundary system when the source supply abundance is low, i.e. impossible to form reservoirs of high productivity. 5 The above 12 types of physical simulation tests indicated that enough energy (pressure) of the oil sources is the decisive factor to ensure hydrocarbon's entering, flowing and accumulating through porous media, and both oil and gas phase will accumulate into the favorable places nearest to the oil sources. 6 The theory, method and related techniques for physical simulation of hydrocarbon's secondary migration/accumulation mechanism have been formed and applied to the E&P of Shengtuo rollover anticline and Niuzhuang turbidite lithological reservoirs. 7 This study developed the theory and method of hydrocarbon migration/accumulation dynamics in terrestrial rift-subsidence lacustrine basins, and the benefits and social effect are remarkable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus is an important biological and ecological element that to a certain degree constrains ecological environment and nutrient (including carbon) cycling. Marine sedimentary phosphorites are the principal phosphorus supply of the mankind. In the eastern to southern margins of the Yangtze Craton, South China, there are two phosphogenetic events at the Doushantuo stage of the Late Sinian and the Meishucun stage of the Early Cambrian respectively, corresponding two explosion events of life across the Precambrian\Cambrian boundary. Phosphorus ores from the Sinian and Cambrian phosphate in South China can be classified roughly into two categories, namely, grained and non-grained phosphorites. Grained phosphorites, hosted in dolostone type of phosphogenetic sequences and with larger industrial values, occur mainly in margins of the Upper Yangtze Platform, formed in shallow-water environments with high hydraulic energy and influenced by frequent sea-level change. Non-grained phosphorites, hosted principally in black-shale type of phosphogenetic sequences and with smaller industrial values, are distributed mainly in the Jiangnan region where deeper-water sub-basins with low hydraulic energy were prevailing at the time of phosphogenesis. Secular change ofδ~(13)C, δ~(18) O, ~(86)Sr/~(87)Sr values of carbonates from Sinian and Cambrian sequences were determined. A negative abnormal ofδ~(13)C, δ~(18)O values and positive abnormal of 86Sr/87Sr values from the fossiliferous section of the Lowest Cambrian Meishucun Formation implies life depopulation and following explosion of life across the PrecambriamCambrian boundary. Based on a lot of observations, this paper put forward a six-stage genetic model describing the whole formational process of industrial phosphorites: 1) Phosphorus was transported from continental weathering products and stored in the ocean; 2) dissolved phosphates in the seawater were enriched in specific deep seawater layer; 3) coastal upwelling currents took this phosphorus-rich seawater to a specific coastal area where phosphorus was captured by oceanic microbes; 4) clastic sediments in this upwelling area were enriched in phosphorus because of abundant phosphorus-rich organic matters and because of phosphorus absorption on grain surfaces; 5) during early diagenesis, the phosphorus enriched in the clastic sediments was released into interstitial water by decomposition and desorption, and then transported to the oxidation-reduction interface where authigenic phosphates were deposited and enriched; 6) such authigenic phosphate-rich layers were scoured, broken up, and winnowed in shallow-water environments resulting in phosphate enrichment. The Sinian-Cambrian phosphorites in South China are in many aspects comparable with coastal-upwelling phosphorites of younger geological ages, especially with phosphorites from modern coastal upwelling areas. That implies the similarities between the Sinian-Cambrian ocean and the modern ocean. Although Sinian-Cambrian oceanic life was much simpler than modern one, but similar oceanic planktons prevail, because oceanic planktons (particularly phytoplanktons) are crucial for phosphate enrichment related to coastal upwelling. It implies also a similar seawater-layering pattern between the Sinian-Cambrian ocean and the modern ocean. The two global phosphate-forming events and corresponding life-explosion events at the Sinian and Cambrian time probably resulted from dissolved-phosphate accumulation in seawater over a critical concentration during the Earth's evolution. Such an oceanic system with seawater phosphorus supersaturation is evidently unstable, and trends to return to normal state through phosphate deposition. Accordingly, this paper put forward a new conception of "normal state <=> phosphorus-supersaturation state" cycling of oceanic system. Such "normal state <=> phosphorus-supersaturation state" cycling was not only important for the three well-known global phosphate-forming events, also related to the critical moments of life evolution on the Earth. It might be of special significance. The favorable paleo-oceanic orientation in regard to coastal-upwelling phosphorite formation suggests a different orientation of the Yangtze Craton between the Sinian time and the present time (with a 135° clockwise difference), and a 25° anti-clockwise rotation of the Yangtze Craton from late Sinian to early Cambrian. During the Sinian-Cambrian time, the Yangtze Craton might be separated from the Cathaysia Block, but might be still associated with the North China Craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper belong to national "973" technological project undertaken by Shengli Oilfield. Work area is composed of turbidite reservoir of S212 and delta reservoir of S283 of Sheng2 unit in Shengtuo Oilfield that has a 36 years water injection development history. Change of the macroscopic, microscopic and filterational parameters and its mechanism have been studied in the 4 water-cut stages i.e. the primary, moderate, high and supper-high stage by using multi-disciplinary theories and approaches, computer techniques and physical simulation comprehensively. Dynamic reservoir models to different water-cut stages have been established. The study of forming mechanism and distribution of residual oil revealed the main types and spatial distribution of residual oil in different water-cut stages and the distribution mode has also been built up. Macroscopic, microscopic and filterational parameters selecting principle, optimizing and selecting standard, matching standard and laws and related database of various dynamic parameters in different water-cut stages have been established, which laid good basis for revealing reservoir macroscopic, microscopic and filterational parameters' dynamic change and residual oil distribution. The study indicated that in general, the macroscopic, microscopic and filterational parameters will slowly increase and become better in both shallow turbidite and delta reservoirs with the increasing of water cut, but different reservoirs have their own characteristics and change laws. Parameters of I~2 unit, whose petrophysical properties are better, increase more quickly than 8~3, whose petrophysical properties are more unfavorable. The changes was relatively quickly in high water-cut stage, while relatively slowly from primary to moderate and from high to supper-high water-cut stage. This paper firstly put forward that reservoir macroscopic, microscopic and filterational parameters are controlled by dynamic geological function of reservoir fluid, which is considered the major reason of reservoir parameters' dynamic changes and residual oil formation and distribution during reservoir development. Physical simulation of filterational parameters verified that forming mechanism and distribution of residual oil in different water-cut stages are also controlled by dynamic geological function of reservoir fluid. The idea of fluid geological function during reservoir development developed the theory of development geology, and has important practical values. This paper firstly constructed dynamic geological and mathematical models and five modes of residual oil distribution in Shengtuo Oilfield, and achieved four-dimensional forecast of residual oil distribution in different watercut stages. Dynamic changes and mechanism of macroscopic, microscopic and fliterational parameters of reservoir and their change process have been revealed. Forecast of residual oil distribution has been achieved by computers. This paper established the related theories, approaches and techniques for residual oil study, characterization and in different water-cut stages, and realized dynamic forecast of residual oil. It gained remarkable economic benefit and social effect in guiding field development. These theories and techniques had important meaningfulness for residual oil prediction in the terrestrial faulted basins not only in Shengli Oilfield but also in the east of China. Furthermore, this study has developed the theory of development geology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Western Qinling Orogenie belt in the Taibai-Fengxian and Xihe-Lixian areas can be subdivided into three units structurally from north to south, which are the island-arc, forearc basin and accretionary wedge, respectively. The forearc basin developed in the Late Paleozoic mainly controls sedimentation and some larger lead-zinc and gold deposits in the western Qinling. Stratigraphically, the island arc is dissected into the Liziyuan Group, the Danfeng Group and the Luohansi Group. The metavolcanic rocks include basic, intermediate and acidic rocks, and their geochemistry demonstrates that these igneous rocks generated in an island arc. Where, the basalts are subalkaline series charactered by low-medium potassium, with enriched LREE, negative Eu anomaly, and positive Nd anomaly. Cr-content of volcanic rocks is 2-3 times higher than that of island arc tholeiite all over the world. In addition, the lightly metamorphosed accretionary wedge in the areas of Huixian, Chengxian, Liuba and Shiqun is dominated by terrigenous sediments with carbonatite, chert, mafic and volcanic rocks. The age of the wedge is the Late Palaeozoic to the Trassic, while previous work suggested that it is the Silurian. The Upper Paleozoic between the island arc belt and accretionary wedge are mainly the sediments filled in the fore arc basin. The fillings in the forearc basin were subdivided into the Dacaiotan Group, the Tieshan Group, the Shujiaba Group and the Xihanshui Group, previously. They outcropped along the southern margins of the Liziyuan Group. The Dacaotan Group, the Upper Devonian, is close to the island arc complex, and composed of a suite of red and gray-green thick and coarse terrestrial elastics. The Shujiaba Group, the Mid-Upper Devonian, is located in the middle of the basin, is mainly fine-grained elastics with a few intercalations of limestone. The Xihanshui Group, which distributes in the southern of the basin, is mainly slates, phyllites and sandstones with carbonatite and reef blocks. The Tieshan Group, the Upper Devonian, just outcrops in the southwest of the basin, is carbonatite and clastic rocks, and deposited in the shallow -sea environment. The faults in the basin are mainly NW trend. The sedimentary characteristics, slump folds, biological assemblages in both sides of and within those faults demonstrate that they were syn-sedimentary faults with multi-period activities. They separated the forearc basin into several sub-basins, which imbricate in the background of a forearc basin with sedimentary characteristics of the piggyback basin. The deep hydrothermal fluid erupted along the syn-sedimentary faults, supported nutrition and energy for the reef, and resulted in hydrothermal-sedimentary rocks, reef and lead-zinc deposits along these faults. The sedimentary facies in the basin varies from the continental slope alluvial fan, to shallow-sea reef facies, and then to deep-water from north to south, which implies that there was a continental slope in the Devonian in the west Qinling. The strata overlap to north and to east respectively. Additionally, the coeval sedimentary facies in north and south are significantly different. The elastics become more and more coarser to north in the basin as well as upward coarsing. These features indicate prograding fillings followed by overlaps of the different fans underwater. The paleocurrent analyses show that the forearc basin is composed of thrust-ramp-basins and deep-water basins. The provenance of the fillings in the basin is the island arc in the north. The lead-zinc deposits were synchronous with the Xihanshui Group in the early stage of development of the forearc basin. They were strongly constrained by syn-sedimentary faults and then modified by the hydrothermal fluids. The gold deposits distributed in the north of the basin resulted from the tectonic activities and magmatism in the later stage of the basin evolution, and occurred at the top of the lead-zinc deposits spatially. The scales of lead-zinc deposits in the south of the basin are larger than that of the gold-deposits. The Pb-Zn deposits in the west of the basin are larger than those in the east, while the Gold deposits in the west of the basin are smaller than those in the east. Mineralizing ages of these deposits become younger and younger to west.