983 resultados para Flame Ionization
Resumo:
In the work underlying this thesis solid-phase microextraction (SPME) was evaluated as a passive sampling technique for organophosphate triesters in indoor air. These compounds are used on a large scale as flame-retarding and plastizicing additives in a variety of materials and products, and have proven to be common pollutants in indoor air. The main objective of this work was to develop an accurate method for measuring the volatile fraction. Such a method can be used in combination with active sampling to obtain information regarding the vapour/particulate distribution in different indoor environments. SPME was investigated under both equilibrium and non-equilibrium conditions and parameters associated with these different conditions were estimated. In Paper I, time-weighted average (TWA) SPME under dynamic conditions was investigated in order to obtain a fast air sampling method for organophosphate triesters. Among the investigated SPME coatings, the absorptive PDMS polymer had the highest affinity for the organophosphate triesters and was consequently used in all further work. Since the sampling rate is dependent on the agitation conditions, the linear airflow rates had to be carefully considered. Sampling periods as short as 1 hour were shown to be sufficient for measurements in the ng-μg m-3 range when using a PDMS 100-μm fibre and a linear flow rate above 7 cm s-1 over the fibre. SPME under equilibrium conditions is rather time-consuming, even under dynamic conditions, for slowly partitioning compounds such as organophosphate triesters. Nevertheless, this method has some significant advantages. For instance, the limit of detection is much lower compared to 1 h TWA sampling. Furthermore, the sampling time can be ignored as long as equilibrium has been attained. In Paper II, SPME under equilibrium conditions was investigated and evaluated for organophosphate triester vapours. Since temperature and humidity are closely associated with the distribution constant a simple study of the effect of these parameters was performed. The obtained distribution constants were used to determine the air levels in a common indoor environment. SPME and parallel active sampling on filters yielded similar results, indicating that the detected compounds were almost entirely associated with the vapour phase To apply dynamic SPME method in the field a sampler device, which enables controlled linear airflow rates to be applied, was constructed and evaluated (Paper III). This device was developed for application of SPME and active sampling in parallel. A GC/PICI-MS/MS method was developed and used in combination with active sampling of organophosphate triesters in indoor air (Paper IV). The combination of MS/MS and the soft ionization achieved with methanol as reagent gas yielded high selectivity and detection limits comparable to those provided by GC with nitrogen-phosphorus detection (NPD). The method limit of detection, when sampling 1.5 m3 of air, was in the range 0.1-1.4 ng m-3. In Paper V, the developed MS method was used in combination with SPME for indoor air measurements. The levels detected in the investigated indoor environments range from a few ng to μg m-3. Tris(2-chloropropyl) phosphate was detected at a concentration as high as 7 μg m-3 in a newly rebuilt lecture room.
Resumo:
This thesis analyzes theoretically and computationally the phenomenon of partial ionization of the substitutional dopants in Silicon Carbide at thermal equilibrium. It is based on the solution of the charge neutrality equation and takes into account the following phenomena: several energy levels in the bandgap; Fermi-Dirac statistics for free carriers; screening effects on the dopant ionization energies; the formation of impurity bands. A self-consistent model and a corresponding simulation software have been realized. A preliminary comparison of our calculations with existing experimental results is carried out.
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.
Resumo:
This purpose of this project was to investigate the collision-induced dissociation of dipeptides in negative ion electrospray ionization tandem mass spectrometry, with a focus on the mechanism of the production of imidazole-type fragments not previously reported from the fragmentation of the dipeptides being studied. The majority of the dipeptides studied were alanine N-terminal or serine C-terminal dipeptides. All dipeptides were dissolved in 50:50 methanol:water, 3 mM ammonium formate. Collision-induced dissociation in the collision cell of a triple quadrupole mass spectrometer was used to fragment [M-H]- precursor ions. Accurate mass measurements confirmed the molecular formula of the imidazole-type fragments. Further MS/MS studies were performed to provide information about the fragmentation mechanism for the formation of the imidazole-type fragments. The m/z values of intermediate ions in the formation of the imidazole-type fragments were confirmed through second-generation product ion scans and precursor ion scans. More sophisticated instrumentation will be required to further probe the structure of the intermediate ions.
Resumo:
Fuel-lean combustion and exhaust gas recirculation (EGR) in spark ignition engines improve engine efficiency and reduce emission. However, flame initiation becomes more difficult in lean and dilute fuel-air mixture with traditional spark discharge. This research proposal will first provide an intensive review on topics related to spark ignition including properties of electrical discharge, flame kernel behavior and spark ignition modeling and simulation. Focus will be laid on electrical discharge pattern effect as it is showing prospect in extending ignition limits in SI engines. An experimental setup has been built with an optically accessible constant volume combustion vessel. Multiple imaging techniques as well as spectroscopy will be applied. By varying spark discharge patterns, preliminary test results are available on consequent flame kernel development. In addition to experimental investigation of spark plasma and flame kernel development, spark ignition modeling with detailed description of plasma channel is also proposed for this study.
Resumo:
Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.
Resumo:
Atmospheric aerosol water-soluble organic compounds (WSOC) exist in a complex mixture of thousands of organic compounds which may have a significant influence on the climate-relevant properties of the atmospheric aerosol. To understand the potential influences, the ambient aerosol was collected at a nonurban mountainous site near Steamboat Springs, CO. The WSOC fraction was analyzed using positive and negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 2400 and 4000 molecular formulas were identified from the detected positive and negative ions, respectively. The formulas contained carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) atoms over the mass range of 100-800 Da in both ionization modes. The number range of double bond equivalents (DBE), the mean O:C, H:C, and oxidation state of carbon for the positive ions were 0 – 18, 0.25 ± 0.15, 1.39 ± 0.29, and -0.89 ± 0.23, respectively. Comparatively, the negative ion values were 0 – 14, 0.53 ± 0.20, 1.48 ± 0.30, and -0.41 ± 0.45, respectively. Overall, the positive ion molecular formulas were less oxygenated than negative ions as seen with the lower O:C and OSc values. Molecular formulas of the positive ions classified as aliphatic, olefinic, and aromatic compound classes based on the aromaticity index values. Aliphatic compounds were the CHNO and CHO formulas that had mean DBE values of about 5 and 3, respectively. However, a majority of the CHOS, CHNOS, and CHS formulas were defined as olefinic compounds and had mean DBE values of about 12, 13, and 10, respectively. Overall, more than half of the assigned molecular formulas contained sulfur and were olefinic to aromatic compounds with a DBE range of 7-18. Source of the unsaturated sulfur containing compounds is currently unknown. Several nitrogen containing compounds were in common with the field and laboratory studies of the biomass burning aerosol and aged secondary organic aerosol products of the limonene ozonolysis.