994 resultados para Embryo quality
Resumo:
Regulatory action to protect California’s coastal water quality from degradation by copper from recreational boats’ antifouling paints interacts with efforts to prevent transport of invasive, hull-fouling species. A copper regulatory program is in place for a major yacht basin in northern San Diego Bay and in process for other major, California boat basins. “Companion” fouling control strategies are used with copper-based antifouling paints, as some invasive species have developed resistance to the copper biocide. Such strategies are critical for boats with less toxic or nontoxic hull coatings. Boat traffic along over 3,000 miles of coastline in California and Baja California increases invasive species transport risks. For example, 80% of boats in Baja California marinas are from the United States, especially California. Policy makers, boating businesses and boat owners need information on costs and supply-side capacity for effective fouling control measures to co-manage water quality and invasive species concerns. (PDF contains 3 pages)
Resumo:
Generally, wetlands are thought to perform water purification functions, removing contaminants as water flows through sediment and vegetation. This paradigm was challenged when Grant et al. (2001) reported that Talbert Salt Marsh (Figure 1.) increased fecal indicator bacteria (FIB) output to coastal waters, contributing to poor coastal water quality. Like most southern California wetlands, Talbert Salt Marsh has been severely degraded. It is a small (10 ha), restored wetland, only 1/100th its original size, and located at the base of a highly urbanized watershed. Is it reasonable to expect that this or any severely altered wetland will perform the same water purification benefits as a natural wetland? To determine how a more pristine southern California coastal wetland attenuated bacterial contaminants, we investigated FIB concentrations entering and exiting Carpinteria Salt Marsh (Figure 2.), a 93 ha, moderate-sized, relatively natural wetland.(PDF contains 4 pages)
Resumo:
This research work involves the determination and modelling of water parameter such as pH, temperature, turbidity, chloride, hardness. The result of the analysis was used as important operating variables to generate a model equation of pH, hardness, temperature, turbidity and chloride. The values obtained from the model equation were compared with those from experiment. On an average bases the values were close. These parameters can be used to monitor the extent of pollution of pond water and to monitor stress and diseases of fish. The experimental data of pH was in the range of 6.7 to 6.9 while the modelled result was also between 6.7 to 7.0. The turbidity experimental value was close to the modelled value also. The chloride value for the experimental data was in the range of 25.32 to 35.0. The total hardness value ranges between 4.5 to 65.1 mg/l while the modelled result ranges between 11.025 to 68.402 mg/l. The result was within the acceptable limit of world health organization standard on water quality parameter.
Resumo:
In this reservoir, the parameters being assessed are very important in the aspect of fish culture. These parameters are: physical parameters which includes temperature (O), Transparency (M).Chemical parameters include: Dissolve oxygen (mg/l) pH concentration and the Biological Parameters which include phytoplankton and zooplankton. The phytoplankton and zooplankton identification and estimation were carried out in the NIFFR Limnology Laboratory, (Green House), New Bussa. Each identified zooplankton and phytoplankton species was placed according to its major group e.g. zooplankton was grouped into three families, Roifera, Cladocera and Copepods. During this study period it was observed that copepods have the highest total number of zooplankton both beside the poultry and monk (station 'A'&'B'). Water temperature of station 'A' (beside the poultry house) ranges from 27 C-29, 5 c also same station 'B' (near the monk). Dissolve oxygen station 'A' range from 6.30mg/l-7.40mg/l while that of station 'B' ranges from 6.20mg/7.50mg/l, turbidity reading of station A'ranges from 0.19m-0.3m while station 'B' ranges from 0.22m-0.37m. The last parameter, which is pH concentration, in both stations 8.2 was observed this is an indication that the pH was constant. According to some literature review all the water parameter figures obtained were good for fish culture
Resumo:
The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.
The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.
Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.
Resumo:
Early embryogenesis in metazoa is controlled by maternally synthesized products. Among these products, the mature egg is loaded with transcripts representing approximately two thirds of the genome. A subset of this maternal RNA pool is degraded prior to the transition to zygotic control of development. This transfer of control of development from maternal to zygotic products is referred to as the midblastula transition (or MBT). It is believed that the degradation of maternal transcripts is required to terminate maternal control of development and to allow zygotic control of development to begin. Until now this process of maternal transcript degradation and the subsequent timing of the MBT has been poorly understood. I have demonstrated that in the early embryo there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is triggered by egg activation, and is targeted to specific classes of mRNAs through cis-acting elements in the 3' untranslated region (UTR}. The second pathway is activated 2 hr after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT. In addition, some transcripts fail to degrade at select subcellular locations adding an element of spatial control to RNA degradation. The spatial control of RNA degradation is achieved by protecting, or masking, transcripts from the degradation machinery. The RNA degradation and protection events are regulated by distinct cis-elements in the 3' untranslated region (UTR). These results provide the first systematic dissection of this highly conserved process in development and demonstrate that RNA degradation is a novel mechanism used for both temporal and spatial control of development.
Resumo:
4 p.
Resumo:
38 p.
Resumo:
This article is an attempt to devise a method of using certain species of Corixidae as a basis for the assessment of general water quality in lakes. An empirical graphical representation of the distribution of populations or communities of Corixidae in relation to conductivity, based mainly on English and Welsh lakes, is used as a predictive monitoring model to establish the "expected" normal community at a given conductivity, representing the total ionic concentration of the water body. A test sample from another lake of known conductivity is then compared with "expected" community. The "goodness of fit" is examined visually or by calculation of indices of similarity based on the relative proportions of the constituent species of each community. A computer programme has been devised for this purpose.