978 resultados para Eddy Current Testing
Resumo:
The aims of this study were to determine whether responses in myocardial blood flow (MBF) to the cold pressor testing (CPT) method noninvasively with PET correlate with an established and validated index of flow-dependent coronary vasomotion on quantitative angiography. METHODS: Fifty-six patients (57 +/- 6 y; 16 with hypertension, 10 with hypercholesterolemia, 8 smokers, and 22 without coronary risk factors) with normal coronary angiograms were studied. Biplanar end-diastolic images of a selected proximal segment of the left anterior descending artery (LAD) (n = 27) or left circumflex artery (LCx) (n = 29) were evaluated with quantitative coronary angiography in order to determine the CPT-induced changes of epicardial luminal area (LA, mm(2)). Within 20 d of coronary angiography, MBF in the LAD, LCx, and right coronary artery territory was measured with (13)N-ammonia and PET at baseline and during CPT. RESULTS: CPT induced on both study days comparable percent changes in the rate x pressure product (%DeltaRPP, 37% +/- 13% and 40% +/- 17%; P = not significant [NS]). For the entire study group, the epicardial LA decreased from 5.07 +/- 1.02 to 4.88 +/- 1.04 mm(2) (DeltaLA, -0.20 +/- 0.89 mm(2)) or by -2.19% +/- 17%, while MBF in the corresponding epicardial vessel segment increased from 0.76 +/- 0.16 to 1.03 +/- 0.33 mL x min(-1) x g(-1) (DeltaMBF, 0.27 +/- 0.25 mL x min(-1) x g(-1)) or 36% +/- 31% (P <or= 0.0001). However, in normal controls without coronary risk factors (n = 22), the epicardial LA increased from 5.01 +/- 1.07 to 5.88 +/- 0.89 mm(2) (19.06% +/- 8.9%) and MBF increased from 0.77 +/- 0.16 to 1.34 +/- 0.34 mL x min(-1) x g(-1) (74.08% +/- 23.5%) during CPT, whereas patients with coronary risk factors (n = 34) revealed a decrease of epicardial LA from 5.13 +/- 1.48 to 4.24 +/- 1.12 mm(2) (-15.94% +/- 12.2%) and a diminished MBF increase (from 0.76 +/- 0.20 to 0.83 +/- 0.25 mL x min(-1) x g(-1) or 10.91% +/- 19.8%) as compared with controls (P < 0.0001, respectively), despite comparable changes in the RPP (P = NS). In addition, there was a significant correlation (r = 0.87; P <or= 0.0001) between CPT-related percent changes in LA on quantitative angiography and in MBF as measured with PET. CONCLUSION: The observed close correlation between an angiographically established parameter of flow-dependent and, most likely, endothelium-mediated coronary vasomotion and PET-measured MBF further supports the validity and value of MBF responses to CPT as a noninvasively available index of coronary circulatory function.
Resumo:
BACKGROUND: We reviewed the current evidence on the benefit and harm of pre-hospital tracheal intubation and mechanical ventilation after traumatic brain injury (TBI). METHODS: We conducted a systematic literature search up to December 2007 without language restriction to identify interventional and observational studies comparing pre-hospital intubation with other airway management (e.g. bag-valve-mask or oxygen administration) in patients with TBI. Information on study design, population, interventions, and outcomes was abstracted by two investigators and cross-checked by two others. Seventeen studies were included with data for 15,335 patients collected from 1985 to 2004. There were 12 retrospective analyses of trauma registries or hospital databases, three cohort studies, one case-control study, and one controlled trial. Using Brain Trauma Foundation classification of evidence, there were 14 class 3 studies, three class 2 studies, and no class 1 study. Six studies were of adults, five of children, and three of both; age groups were unclear in three studies. Maximum follow-up was up to 6 months or hospital discharge. RESULTS: In 13 studies, the unadjusted odds ratios (ORs) for an effect of pre-hospital intubation on in-hospital mortality ranged from 0.17 (favouring control interventions) to 2.43 (favouring pre-hospital intubation); adjusted ORs ranged from 0.24 to 1.42. Estimates for functional outcomes after TBI were equivocal. Three studies indicated higher risk of pneumonia associated with pre-hospital (when compared with in-hospital) intubation. CONCLUSIONS: Overall, the available evidence did not support any benefit from pre-hospital intubation and mechanical ventilation after TBI. Additional arguments need to be taken into account, including medical and procedural aspects.
Resumo:
Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MTT assay and uptake of the vital dye neutral red 24 h after dosing (NRU). Results. Lysine-derivative surfactants showed higher IC50s than did commercial anionic irritant compounds such as sodium dodecyl sulphate, proving to be no more harmful than amphoteric betaines. The aggressiveness of the surfactants depended upon the size of their constituent counterions: surfactants associated with lighter counterions showed a proportionally higher aggressivity than those with heavier ones. Conclusions. Synthetic lysine-derivative anionic surfactants are less irritant than commercial surfactants such as sodium dodecyl sulphate and Hexadecyltrimethylammonium bromide and are similar to Betaines. These surfactants may offer promising applications in pharmaceutical and cosmetic preparations, representing a potential alternative to commercial anionic surfactants as a result of their low irritancy potential.
Resumo:
There is a renewal of interest among psychotherapy researchers and psychotherapists towards psychotherapy case studies. This article presents two paradigms that have greatly influenced this increasing interest in psychotherapy case studies : the pragmatic case study and the theory-building case study paradigm. The origins, developments and key-concepts of both paradigms are presented, as well as their methodological and ethical specificities. Examples of case studies, along with models developed, are cited. The differential influence of the post-modern schools on both paradigms are presented, as well as their contribution to the field of methods of psychotherapy case studies discussed and assessed in terms of relevance for the researcher and the psychotherapist.
Resumo:
More than 60% of neuroendocrine tumours, also called carcinoids, are localised within the gastrointestinal tract. Small bowel neuroendocrine tumours have been diagnosed with increasing frequency over the past 35 years, being the second most frequent tumours of the small intestine. Ileal neuroendocrine tumours diagnosis is late because patients have non-specific symptoms. We have proposed to illustrate as an example the case of a patient, and on its basis, to make a brief review of the literature on small bowel neuroendocrine tumours, resuming several recent changes in the field, concerning classification criteria of these tumours and new recommendations and current advances in diagnosis and treatment. This patient came to our emergency department with a complete bowel obstruction, along with a 2-year history of peristaltic abdominal pain, vomits and diarrhoea episodes. During emergency laparotomy, an ileal stricture was observed, that showed to be a neuroendocrine tumour of the small bowel.
Resumo:
The present research project was designed to identify the typical Iowa material input values that are required by the Mechanistic-Empirical Pavement Design Guide (MEPDG) for the Level 3 concrete pavement design. It was also designed to investigate the existing equations that might be used to predict Iowa pavement concrete for the Level 2 pavement design. In this project, over 20,000 data were collected from the Iowa Department of Transportation (DOT) and other sources. These data, most of which were concrete compressive strength, slump, air content, and unit weight data, were synthesized and their statistical parameters (such as the mean values and standard variations) were analyzed. Based on the analyses, the typical input values of Iowa pavement concrete, such as 28-day compressive strength (f’c), splitting tensile strength (fsp), elastic modulus (Ec), and modulus of rupture (MOR), were evaluated. The study indicates that the 28-day MOR of Iowa concrete is 646 + 51 psi, very close to the MEPDG default value (650 psi). The 28-day Ec of Iowa concrete (based only on two available data of the Iowa Curling and Warping project) is 4.82 + 0.28x106 psi, which is quite different from the MEPDG default value (3.93 x106 psi); therefore, the researchers recommend re-evaluating after more Iowa test data become available. The drying shrinkage (εc) of a typical Iowa concrete (C-3WR-C20 mix) was tested at Concrete Technology Laboratory (CTL). The test results show that the ultimate shrinkage of the concrete is about 454 microstrain and the time for the concrete to reach 50% of ultimate shrinkage is at 32 days; both of these values are very close to the MEPDG default values. The comparison of the Iowa test data and the MEPDG default values, as well as the recommendations on the input values to be used in MEPDG for Iowa PCC pavement design, are summarized in Table 20 of this report. The available equations for predicting the above-mentioned concrete properties were also assembled. The validity of these equations for Iowa concrete materials was examined. Multiple-parameters nonlinear regression analyses, along with the artificial neural network (ANN) method, were employed to investigate the relationships among Iowa concrete material properties and to modify the existing equations so as to be suitable for Iowa concrete materials. However, due to lack of necessary data sets, the relationships between Iowa concrete properties were established based on the limited data from CP Tech Center’s projects and ISU classes only. The researchers suggest that the resulting relationships be used by Iowa pavement design engineers as references only. The present study furthermore indicates that appropriately documenting concrete properties, including flexural strength, elastic modulus, and information on concrete mix design, is essential for updating the typical Iowa material input values and providing rational prediction equations for concrete pavement design in the future.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retroreflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retroreflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retroreflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance. At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
An ammonium chloride procedure was used to prepare a bacterial pellet from positive blood cultures, which was used for direct inoculation of VITEK 2 cards. Correct identification reached 99% for Enterobacteriaceae and 74% for staphylococci. For antibiotic susceptibility testing, very major and major errors were 0.1 and 0.3% for Enterobacteriaceae, and 0.7 and 0.1% for staphylococci, respectively. Thus, bacterial pellets prepared with ammonium chloride allow direct inoculation of VITEK cards with excellent accuracy for Enterobacteriaceae and a lower accuracy for staphylococci.
Resumo:
Timber material repair and replacement cost for timber bridges is a considerable expense to highway agencies in Iowa, especially to county road departments. To address these needs, the objectives of this investigation was to study the field effectiveness of various treatment alternatives used on Iowa roadway projects and to determine if the current specifications and testing are adequate for providing proper wood preservation. To satisfy the research needs, the project scope involved a literature review, identification of metrics, questionnaire survey of Iowa counties, onsite inspections, and a review of current specifications and testing procedures. Based on the preservative information obtained, the following general conclusions were made: Copper naphthenate is recommended as the plant-applied preservative treatment for timber bridges. Best Management Practices should be followed to ensure quality treatment of timber materials. Bridge maintenance programs need to be developed and implemented. The Iowa Department of Transportation specifications for preservative treatment are the regulating specification for bridges constructed with state or federal funding in Iowa and are also recommended for all other bridges.
Resumo:
The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the “bump at the end of the bridge”. A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. Two different approach slabs, one being precast concrete and the other being cast-inplace concrete, were integrally connected to side-by-side bridges and investigated. The primary objective of this investigation was to evaluate the approach slab performance and the impacts the approach slabs have on the bridge. To satisfy the research needs, the project scope involved a literature review, survey of Midwest Department of Transportation current practices, implementing a health monitoring system on the bridge and approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections. Based on the information obtained from the testing the following general conclusions were made: The integral connection between the approach slabs and the bridges appear to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; Tying the approach slab to the bridge appears to impact the bridge; The two different approach slabs, the longer precast slab and the shorter cast-in-place slab, appear to impact the bridge differently; The measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge; The observed responses generally followed an annual cyclic and/or short term cyclic pattern over time.
Resumo:
Construction of portland cement concrete pavements is a complex process. A small fraction of the concrete pavements constructed in the United States over the last few decades have either failed prematurely or exhibited moderate to severe distress. In an effort to prevent future premature failures, 17 state transportation agencies pooled their resources, and a pooled fund research project, Material and Construction Optimization for Prevention of Premature Pavement Distress in PCC Pavements, was undertaken in 2003. Its purpose was to evaluate existing quality control tests, and then select and advance the state-of-the-practice of those tests most useful for optimizing concrete pavements during mix design, mix verification, and construction. This testing guide is one product of that project. The guide provides three recommended testing schemes (Levels A, B, and C, depending on a pavement’s design life and traffic volumes, etc.) that balance the costs of testing with the risk of failure for various project types. The recommended tests are all part of a comprehensive suite of tests described in detail in this guide.
Resumo:
In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth deck panels that were prestressed in the transverse direction, and after installation on the prestressed concrete girders, post-tensioned in the longitudinal direction. Prior to construction, laboratory tests were completed on the precast abutment and pier cap elements. The substructure testing was to determine the punching shear strength of the elements. Post-tensioning testing and verification of the precast deck system was performed in the field. The forces in the tendons provided by the contractor were verified and losses due to the post-tensioning operation were measured. The stress (strain) distribution in the deck panels due to the post-tensioning was also measured and analyzed. The entire construction process for this bridge system was documented. Representatives from the Boone County Engineers Office, the prime contractor, precast fabricator, and researchers from Iowa State University provided feedback and suggestions for improving the constructability of this design.
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed in 2007 over a stream. The bridge’s precast elements included precast cap beams and precast box girders. Precast element fabrication and bridge construction were observed, two precast box girders were tested in the laboratory, and the completed bridge was field tested in 2007 and 2008.
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBISB) system for use with accelerated construction. A typical PMBISB is comprised of five to six precast MBISB panels and is used on low volume roads, on short spans, and is installed and fabricated by county forces. Precast abutment caps and a precast abutment backwall were also developed by BHC for use with the PMBISB. The objective of the research was to gain knowledge of the global behavior of the bridge system in the field, to quantify the strength and behavior of the individual precast components, and to develop a more time efficient panel-to-panel field connection. Precast components tested in the laboratory include two precast abutment caps, three different types of deck panel connections, and a precast abutment backwall. The abutment caps and backwall were tested for behavior and strength. The three panel-to-panel connections were tested in the lab for strength and were evaluated based on cost and constructability. Two PMBISB were tested in the field to determine stresses, lateral distribution characteristics, and overall global behavior.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.