974 resultados para Direct muscle neurotization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Launched by representatives from the Union démocratique du centre (UDC) with the aim of circumventing political and judicial decisions made at both local and national levels, the 2009 federal popular initiative calling for a ban on the construction of minarets rekindled the stigmatisation of Muslims living in Switzerland. Within the prevalent institutional configuration it moreover revived controversies surrounding issues such as direct democracy versus fundamental rights, or "the will of the people" versus "the power of the judges", whether national or international. "Judicialisation" is a polysemous concept. It is not understood here as the transfer to the courts of matters of political significance - in this instance the public regulation of religion - but as a process of juridification (or juridicalisation) in which court rulings were constantly anticipated in the political debate provoked by the popular initiative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. METHODS: The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. RESULTS: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). CONCLUSIONS: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscular function of the neck region may be of importance for the etiology of headache, especially of tension-type headache. However, very few data exist on the association of neck muscle function with different types of headache in adolescents. The main aim of the study was to examine the association of neck muscle function with adolescent headache. The associations between leisure time activities, endurance strength of the upper extremities (UE endurance) and mobility of the neck-shoulder region and adolescent headache were studied. In addition, the associations of force production, EMG/force ratio, co-activation and fatigue characteristics, and cross-sectional area (CSA) of neck muscles with adolescent headache were studied. The study is part of a population-based cohort study of 12-year-old children with and without headache. The study had five phases (years 1998-2003). At the age of 13 years, a sample of 183 adolescents (183/311) participated in endurance strength and mobility measurements of the neck-shoulder region. In addition, the type and level of physical and other leisure activity were elicited with open and structured questions. At the age of 17 years, a random sample of 89 adolescents (89/202) participated in force and EMG measurements of the neck-shoulder muscles. In addition, at the age of 17 years, a sample of 65 adolescents (65/89) participated in CSA measurements of the neck muscles. At the age of 13 years, intensive participation in overall sports activity was associated with migraine. Frequent computer use was associated both with migraine and tension-type headache. The type of sports or other leisure activity classified them on the basis of body loading was not associated with headache type. In girls, low UE endurance of both sides, and low cervical rotation of the dominant side, were associated with tension-type headache, and low UE endurance of non-dominant side with migraine. In boys, no associations occurred between UE endurance and mobility variables and headache types. At the age of 17 years, in girls, high EMG/force ratios between the EMG of the left agonist sternocleidomastoid muscle (SCM) and maximal neck flexion and neck rotation force to the right side as well as high co-activation of right antagonist cervical erector spinae (CES) muscles during maximal neck flexion force were associated with migraine-type headache. In girls, neck force production was not associated with headache types but low left shoulder flexion force was associated with tension-type headache. In boys, no associations were found between EMG and force variables and headache. Increased SCM muscles fatigue of both sides was associated with tension-type headache. In boys, the small CSA of the right SCM muscle and, in girls, of combined right SCM and scalenus muscles was associated with tension-type headache. Similarly, in boys, the large CSA of the right SCM muscle, of the combined right SCM and scalenus muscles, of the left semispinalis capitis muscle, of the combined left semispinalis and splenius muscles was associated with migraine. No other differences in the CSA of neck flexion or extension muscles were found. Differences in the neuromucular function of the neck-shoulder muscles were associated with adolescent headache, especially in girls. Differences in the cross-sectional area of unilateral neck muscles were associated with headache, especially in boys. Differences in the neuromuscular function and in the cross-sectional area of the neck muscles also occurred between different types of headache. It remains to be established whether the findings are primary or secondary to adolescent migraine and tension headache. Keywords: adolescent, cross-sectional area, electromyography, endurance strength, fatigue, force, headache, leisure time activity, migraine, mobility, neck muscles, tension-type headache

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cachexia is a common systemic manifestation. Additionally, myostatin is known to be a negative regulator of skeletal muscle development. The present study aimed to investigate whether formoterol down-regulates the myostatin system in skeletal muscle of tumour-bearing rats. Real-time PCR and Western blotting were used for the analysis. Results showed that rats bearing the Yoshida AH-130 ascites hepatoma, a cachexia-inducing tumour, exhibited marked muscle wasting that affected the mass of the muscles studied. The cachectic animals exhibited a significant increase in the mRNA levels of the myostatin receptor (ActIIB) in gastrocnemius muscles. Notably, the expression of the various forms of follistatin, a protein with the opposite effects to those of myostatin, was significantly reduced as a result of the implantation of the tumour. When the animals were treated with formoterol, a β-agonist with anti-cachectic potential, increases in skeletal muscle weights were observed. The β-agonist significantly increased levels of various follistatin isoforms and significantly decreased the expression levels of the myostatin receptor. In addition, formoterol treatment resulted in a significant decrease of the myostatin protein content of the gastrocnemius muscle. In conclusion, the results presented indicate that certain anabolic actions of formoterol on the skeletal muscle of cachectic animals may be mediated via the myostatin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. J. Cell. Physiol. 231: 708-718, 2016. © 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing use of direct oral anticoagulants, in particular among older subjects, raises questions about the limits of the evidence-based medicine. The phase III studies that have validated the efficacy and the safety profile of these molecules (dabigatran, rivaroxaban, apixaban, edoxaban) in their both indications, the venous thromboembolic disease and the non-valvular atrial fibrillation raise concerns in four major fields: the financial support of pharmaceutical companies, the links of interest for many authors with the industry, the study design (exclusively non-inferiority studies), and the poor representativeness of the older subjects included. All these points are discussed, using data of sub-groups studies, post-marketing studies and recent meta-analysis. The lack of data for the very old subjects, with frailty or comorbidities, remains the main concern from these phase III studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion-related muscular disorders.