989 resultados para Direct Simulation
Resumo:
Tumor antigen-specific CD4(+) T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4(+) T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4(+) helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4(+) T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8(+) T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8(+) T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients.
Resumo:
Launched by representatives from the Union démocratique du centre (UDC) with the aim of circumventing political and judicial decisions made at both local and national levels, the 2009 federal popular initiative calling for a ban on the construction of minarets rekindled the stigmatisation of Muslims living in Switzerland. Within the prevalent institutional configuration it moreover revived controversies surrounding issues such as direct democracy versus fundamental rights, or "the will of the people" versus "the power of the judges", whether national or international. "Judicialisation" is a polysemous concept. It is not understood here as the transfer to the courts of matters of political significance - in this instance the public regulation of religion - but as a process of juridification (or juridicalisation) in which court rulings were constantly anticipated in the political debate provoked by the popular initiative.
Resumo:
The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.
Resumo:
The growing use of direct oral anticoagulants, in particular among older subjects, raises questions about the limits of the evidence-based medicine. The phase III studies that have validated the efficacy and the safety profile of these molecules (dabigatran, rivaroxaban, apixaban, edoxaban) in their both indications, the venous thromboembolic disease and the non-valvular atrial fibrillation raise concerns in four major fields: the financial support of pharmaceutical companies, the links of interest for many authors with the industry, the study design (exclusively non-inferiority studies), and the poor representativeness of the older subjects included. All these points are discussed, using data of sub-groups studies, post-marketing studies and recent meta-analysis. The lack of data for the very old subjects, with frailty or comorbidities, remains the main concern from these phase III studies.
Resumo:
Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
Pressurized re-entrant (or 4 pi) ionization chambers (ICs) connected to current-measuring electronics are used for activity measurements of photon emitting radionuclides and some beta emitters in the fields of metrology and nuclear medicine. As a secondary method, these instruments need to be calibrated with appropriate activity standards from primary or direct standardization. The use of these instruments over 50 years has been well described in numerous publications, such as the Monographie BIPM-4 and the special issue of Metrologia on radionuclide metrology (Ratel 2007 Metrologia 44 S7-16, Schrader1997 Activity Measurements With Ionization Chambers (Monographie BIPM-4) Schrader 2007 Metrologia 44 S53-66, Cox et al 2007 Measurement Modelling of the International Reference System (SIR) for Gamma-Emitting Radionuclides (Monographie BIPM-7)). The present work describes the principles of activity measurements, calibrations, and impurity corrections using pressurized ionization chambers in the first part and the uncertainty analysis illustrated with example uncertainty budgets from routine source-calibration as well as from an international reference system (SIR) measurement in the second part.
Resumo:
This article examines the position of US and European business in the debate about American direct investment in Western Europe in a historical perspective, from the establishment of the Common Market to the introduction of US regulation of foreign direct investment (FDI) a decade later. Based on abundant and diverse archival documents, it sheds new light on the process of Americanisation and contributes to existing research on transnational networks, by revealing the active role industrial leaders on both sides of the Atlantic played in shaping the political responses to problems raised by the American firms' massive presence in the Common Market.
Resumo:
The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.
Resumo:
Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.
Resumo:
BACKGROUND: Tinnitus is an often disabling condition for which there is no effective therapy. Current research suggests that tinnitus may develop due to maladaptive plastic changes and altered activity in the auditory and prefrontal cortex. Transcranial direct current stimulation (tDCS) modulates brain activity and has been shown to transiently suppress tinnitus in trials. OBJECTIVE: To investigate the efficacy and safety of tDCS in the treatment of chronic subjective tinnitus. METHODS: In a randomized, parallel, double-blind, sham-controlled study, the efficacy and safety of cathodal tDCS to the auditory cortex with anode over the prefrontal cortex was investigated in five sessions over five consecutive days. Tinnitus was assessed after the last session on day 5, and at follow-up visits 1 and 3 months post stimulation using the Tinnitus Handicap Inventory (THI, primary outcome measure), Subjective Tinnitus Severity Scale, Hospital Anxiety and Depression scale, Visual Analogue Scale, and Clinical Global Impression scale. RESULTS: 42 patients were investigated, 21 received tDCS and 21 sham stimulation. There were no beneficial effects of tDCS on tinnitus as assessed by primary and secondary outcome measures. Effect size assessed with Cohen's d amounted to 0.08 (95% CI: -0.52 to 0.69) at 1 month and 0.18 (95% CI: -0.43 to 0.78) at 3 months for the THI. CONCLUSION: tDCS of the auditory and prefrontal cortices is safe, but does not improve tinnitus. Different tDCS protocols might be beneficial.