992 resultados para Cycle Decomposition
Resumo:
Ruthenium red, a di-mu-oxo-bridged ruthenium complex, and its oxidised form, ruthenium brown, have been studied as possible homogeneous redox catalysts for the oxidation of water to O2 by Ce(IV) ions in H2SO4 and HCIO4. In both media the Ce(IV) ions oxidised the ruthenium red to brown and, with excess of Ce(IV), decomposed the ruthenium brown irreversibly to product(s) with three weak absorption bands at 390, 523 and 593 nm. Only in HCIO4 did the decomposition product(s) appear to act as a stable O2 catalyst. Spectral evidence tentatively suggests that the active catalyst may be a hydrolysed Ru(IV) polymeric species. The rate of catalysis was proportional to the initial concentration of ruthenium red/brown and the activation energy was determined as 36 +/- 1 kJ mol-1 over the temperature range ambient to ca. 50-degrees-C. At temperatures greater than 50-degrees-C the O2 catalyst undergoes an irreversible thermal decomposition reaction.
Resumo:
This paper reports the findings of research on the environmental performance of two case-study houses, a retrofit and new build. The retrofit was completed to a Passivhaus standard while the new build was completed to current Irish building regulations. Environmental performance of the retrofit and new build was measured using life-cycle assessments, examining the assembly, operational and end-of-life stage over life spans of 50 and 80 years. Using primary information, life-cycle assessment software and life-cycle assessment databases the environmental impacts of each stage were modelled. The operational stage of both case studies was found to be the source of the most significant environmental damage, followed by the assembly and the end-of-life stage respectively. The relative importance of the assembly and end-of-life stage decreased as the life span increased. It was found that the retrofit house studied outperformed the new build in the assembly and operational stage, whereas the new build performed better in the end-of-life stage; however, this is highly sensitive, depending on the standards to which both are completed. Operational energy savings pre- and post-retrofit were significant, indicating the future potential for adoption of high-quality retrofitting practices.
Resumo:
Efficient production of coherent harmonic radiation from solid targets relies critically on the formation of smooth, short density scalelength plasmas. Recent experimental results (Dromey et al 2009 Nat. Phys. 5 146) suggest, however, that the target roughness on the scale of the emitted harmonic wavelength does not result in diffuse reflection-in apparent contradiction to the Rayleigh criterion for coherent reflection. In this paper we show, for the first time, using analytic theory and 2D PIC simulations, that the interaction of relativistically strong laser pulses with corrugated target surfaces results in a highly effective smoothing of the interaction surface and consequently the generation of highly collimated and temporally confined XUV pulses from rough targets, in excellent agreement with experimental observations.
Resumo:
Fatigue damage calculations of unidirectional polymer composites is presented applying micromechanics theory. An orthotropic micromechanical damage model is integrated with an isotropic fatigue evolution model to predict the micromechanical fatigue damage of the composite structure. The orthotropic micromechanical damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. The advantage of using this approach is the cheap determination of model parameters since the orthotropic damage model parameters can be determined using available data from quasi-static loading tests. Decomposition of the state variables down to the constituent scale is accomplished by micromechanics theory. Phenomenological damage evolution models are then postulated for each constituent and for interphase among them. Comparison between model predictions and experimental data is presented.
Resumo:
A new model for fatigue damage evolution of polymer matrix composites (PMC) is presented. The model is based on a combination of an orthotropic damage model and an isotropic fatigue evolution model. The orthotropic damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. This approach facilitates the determination of model parameters since the orthotropic damage model parameters can be determined from available data from quasi-static-loading tests. Then, limited amount of fatigue data is needed to adjust the fatigue evolution model. The combination of these two models provides a compromise between efficiency and accuracy. Decomposition of the state variables down to the constituent scale is accomplished by micro-mechanics. Phenomenological damage evolution models are then postulated for each constituent and for the micro-structural interaction among them. Model parameters are determined from available experimental data. Comparison between model predictions and additional experimental data is presented.
Resumo:
The recent adiabatic saddle-point method of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is applied to study strong-field photodetachment of H- by few-cycle linearly polarized laser pulses of frequencies near the two-photon detachment threshold. The behavior of the saddle points in the complex-time plane for a range of laser parameters is explored. A detailed analysis of the influence of laser intensities [(2×1011)–(6.5 × 1011) W/cm2], midinfrared laser wavelengths (1800–2700 nm), and various values of the carrier envelope phase (CEP) on (i) three-dimensional probability detachment distributions, (ii) photoangular distributions (PADs), (iii) energy spectra, and (iv) momentum distributions are presented. Examination of the probability distributions and PADs reveal main lobes and jetlike structures. Bifurcation phenomena in the probability distributions and PADs are also observed as the wavelength and intensity increase. Our simulations show that the (i) probability distributions, (ii) PADs, and (iii) energy spectra are extremely sensitive to the CEP and thus measuring such distributions provides a useful tool for determining this phase. The symmetrical properties of the electron momentum distributions are also found to be strongly correlated with the CEP and this provides an additional robust method for measuring the CEP of a laser pulse. Our calculations further show that for a three-cycle pulse inclusion of all eight saddle points is required in the evaluation of the transition amplitude to yield an accurate description of the photodetachment process. This is in contrast to recent results for a five-cycle pulse.
Resumo:
The aim of this study was to assess the reliability and feasibility of cycle ergometer tests in young children with cystic fibrosis (CF). Children with CF aged 6-11 years and with stable lung disease performed two cycle ergometry tests (intermittent sprint and continuous incremental) on two occasions 1 week apart. Reliability was assessed using repeated-measures ANOVA. Bias was considered to be significant at P?
Resumo:
In order to achieve progress towards sustainable resource management, it is essential to evaluate options for the reuse and recycling of secondary raw materials, in order to provide a robust evidence base for decision makers. This paper presents the research undertaken in the development of a web-based decision-support tool (the used tyres resource efficiency tool) to compare three processing routes for used tyres compared to their existing primary alternatives. Primary data on the energy and material flows for the three routes, and their alternatives were collected and analysed. The methodology used was a streamlined life-cycle assessment (sLCA) approach. Processes included were: car tyre baling against aggregate gabions; car tyre retreading against new car tyres; and car tyre shred used in landfill engineering against primary aggregates. The outputs of the assessment, and web-based tool, were estimates of raw materials used, carbon dioxide emissions and costs. The paper discusses the benefits of carrying out a streamlined LCA and using the outputs of this analysis to develop a decision-support tool. The strengths and weakness of this approach are discussed and future research priorities identified which could facilitate the use of life cycle approaches by designers and practitioners.
Resumo:
In this paper, a novel approach to automatically sub-divide a complex geometry and apply an efficient mesh is presented. Following the identification and removal of thin-sheet regions from an arbitrary solid using the thick/thin decomposition approach developed by Robinson et al. [1], the technique here employs shape metrics generated using local sizing measures to identify long-slender regions within the thick body. A series of algorithms automatically partition the thick region into a non-manifold assembly of long-slender and complex sub-regions. A structured anisotropic mesh is applied to the thin-sheet and long-slender bodies, and the remaining complex bodies are filled with unstructured isotropic tetrahedra. The resulting semi-structured mesh possesses significantly fewer degrees of freedom than the equivalent unstructured mesh, demonstrating the effectiveness of the approach. The accuracy of the efficient meshes generated for a complex geometry is verified via a study that compares the results of a modal analysis with the results of an equivalent analysis on a dense tetrahedral mesh.
Resumo:
The life cycle concept has come to have considerable prominence in Irish social policy debate. However, this has occurred without any systematic effort to link its usage to the broader literature relating to the concept. Nor has there been any detailed consideration of how we should set about operationalising the concept. In this paper we argue the need for "macro" life cycle perspectives that have been influenced by recent challenges to the welfare state to be combined with "micro" perspectives focusing on the dynamic and multidimensional nature of social exclusion. We make use of Irish EU-SILC 2005 data in developing a life cycle schema and considering its relationship to a range of indicators of social exclusion. At the European level renewed interest in the life cycle concept is associated with the increasing emphasis on the distinction between "new" and "old" social risks and the notion that the former are more "individualised". Inequality and poverty rather than being differentially distributed between social classes are thought to vary between phases in the average work life. Our findings suggest the "death of social class" thesis is greatly overblown. A more accurate appreciation of the importance of new and old social risks requires that we systematically investigate the manner in which factors such as social class and the life cycle interact.
Resumo:
Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.
Resumo:
In any internal combustion engine, the amount of heat rejected from the engine, and associated systems, is a result of the engine inefficiency. Successfully recovering a small proportion of this energy would therefore substantially improve the fuel economy.