963 resultados para Corn and Brachiaria - Intercropping systems
Resumo:
In this study an optimization method for the design of combined solar and pellet heating systems is presented and evaluated. The paper describes the steps of the method by applying it for an example of system. The objective of the optimization was to find the design parameters that give the lowest auxiliary energy (pellet fuel + auxiliary electricity) and carbon monoxide (CO) emissions for a system with a typical load, a single family house in Sweden. Weighting factors have been used for the auxiliary energy use and CO emissions to give a combined target function. Different weighting factors were tested. The results show that extreme weighting factors lead to their own minima. However, it was possible to find factors that ensure low values for both auxiliary energy and CO emissions.
Resumo:
The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.
Resumo:
In this study the monitoring results of prototype installation of a recently developed solar combisystem have been evaluated. The system, that uses a water jacketed pellet stove as auxiliary heater, was installed in a single family house in Borlänge/Sweden. In order to allow an evaluation under realistic conditions the system has been monitored for a time period of one year. From the measurements of the system it could be seen that it is important that the pellet stove has a sufficient buffer store volume to minimize cycling. The measurements showed also that the stove gives a lower share of the produced heat to the water loop than measured under stationary conditions. The solar system works as expected and covers the heat demand during the summer and a part of the heat demand during spring and autumn. Potential for optimization exists for the parasitic electricity demand. The system consumes 680 kWh per year for pumps, valves and controllers which is more than 4% of the total primary heating energy demand.