999 resultados para Complex collaborations
Resumo:
in this communication, a novel Er3+ complex Er(PT)(3)TPPO [PT = 1-phenyl-3-methyl-4-tert-butylbenzoyl-5-pyrazolone, TPPO = triphenyl phosphine oxide] is successfully synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Its optical properties and the energy transfer process from the ligand PT to the Er3+ ion are investigated, the typical near-infrared (NIR) luminescence (centered at around 1530 nm) is attributed to the I-4(13/2) -> I-4(15/2) transition of Er3+ ion which results from the efficient energy transfer from PT to Er3+ ion (an antenna effect). The wider full width at half maximum (78 nm) peaked at 1530 nm in the emission spectrum and the Judd-Ofelt theory calculation on the radiative properties suggest that Er(PT)(3)TPPO should be a promising candidate for tunable lasers and planar optical amplifiers.
Resumo:
A trivalent neodymium ion (Nd3+) complex Nd(PM)(3)(TP)(2) was synthesized, and its optical properties was studied by introducing Judd-Ofelt theory to calculate the radiative transition rate and the radiative decay time of the F-4(3/2) -> (4)l(J), transitions in this Nd(III) complex. The strong emissions of this complex at near-infrared region were owing to the efficient energy transfer from ligands to center metal ion. The potential application of this complex in NIR electroluminescence was studied by fabricating several devices. The maximum NIR irradiance was obtained as 2.1 mW/m(2) at 16.5 V.
Resumo:
The crystal structure of a ternary Tm(DBM)(3)phen complex (DBM - dibenzoylmethane; phen = 1. 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM)(3)phen C59H47N2O7Tm, monoclinic P21/c, a = 19.3216(12) A, b = 10.6691(7) A, c = 23.0165(15)A, alpha = 90, beta = 91.6330(10), gamma = 90, V = 4742.8(5) A(3), Z = 4. The properties of the Tm(DBM)(3)phen complex and the corresponding hybrid mesoporous material [Tm(DBM)(3)phen-MCM-41] have been studied. The results reveal that the Tm(DBM)(3)phen complex is successfully covalently bonded to MCM-41.
Resumo:
A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)(2)Ir(acac) (bis(2,4-diphenylquinolyl-N,C-2') iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Forster energy transfer from the PF main chain to (PPQ)(2)Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex I incorporated into the polymers is as low as 1 mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0 cd A(-1) with a luminance of 2000 cd m(-2) and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes.
Resumo:
Luminescent heteroleptic Cu-I complexes based on asymmetrical iminephosphine ligands exhibit improved electrochemical and photochemical stability as compared to the analogous complexes based on traditional diimine or diphosphine ligands.
Resumo:
Cobalt 2,4-dinitrophenolate (complex 1) based upon a N,N,O,O-tetradentate Schiff base ligand framework was prepared. X-ray diffraction analysis confirmed that complex 1 was triclinic species with a six-coordinated central cobalt octahedron in the solid. Asymmetric alternating copolymerization of carbon dioxide (CO2) with racemic propylene oxide (rac-PO) proceeded effectively by complex 1 in conjunction with (4-dimethylamino)pyridine (DMAP), yielding a perfectly alternating and bimodal molecular weight distribution PO/CO2 poly(propylene carbonate) (PPC) with a small amount of cyclic carbonate byproducts.
Resumo:
The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.
Resumo:
The nano-scale luminescent complex of Terbium(III)-trimesic acid (TMA)-1,10-phenanthroline(phen) was successfully synthesized by co-precipitation method in this paper. The chemical formula of the synthesized complex was speculated to be Tb(TMA)(phen)(0.0125)center dot 5H(2)O by elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and Fourier-transform infrared spectroscopy (FTIR). XRD pattern of Tb(TMA)(phen)(0.0125)center dot 5H(2)O indicated that it was a new crystalline complex since the diffraction angle, diffraction intensity and the distance of crystal plane were all different from those of the two ligands. TG curve proved that the synthesized nano-scale luminescent complex was stable in the range from ambient temperature to 464 degrees C in air. TEM images showed that the complex was spherical shape with an average size of 40 nm.
Resumo:
Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.
Resumo:
In this study. lectin-conjugated gold nanoparticles (GNPs) were prepared by standard biotin-streptavidin chemistry. The lectin-conjugated GNPs call be used as ail indicator for studying the interaction of lectin with glycosyl complex on living cellular Surfaces due to the high affinity of the lectin with saccharides. The interactions of two well-known lectins (Ricinus communis agglutinin and concanavalin A) and three different cell lines (HeLa, 293, and 293T) were selected here to establish this assay. Highly binding affinity of R. communis agglutinin with cells was demonstrated by conventional microscopic and UV-visible spectroscopic Studies. In addition, the binding process can be inhibited by galactose, giving further proof of the binding mechanism. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
We report here a novel AMP biosensor based on the aptamer-induced disassembly of fluorescent and magnetic nano-silica sandwich complexes with a direct detection limit of 0.1 mu M.
Resumo:
Soluble NdCl3 center dot 3EHOH (2-ethyl hexanol) in hexane combined with AlEt3 is highly active for isoprene polymerization in hexane. The NdCl3 center dot 3EHOH/AlEt3 has higher activity than the typical binary catalyst NdCl3 center dot 3(i)PrOH (isopropanol)/AlEt3 and ternary catalyst NdV3 (neodymium versatate)/AlEt2Cl/Al(i-Bu)(2)H. The molecular weight of polyisoprenes can be controlled by variation of [Nd], [Al]/[Nd] ratio and polymerization temperature and time. The NdCl3 center dot 3EHOH/AlEt3 catalyst polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 96%), high molecular weight (ca. 10(5)) and relatively narr ow molecular weight distributions (M-w/M-n = 2.0-2.8) simultaneously. More importantly, some living polymerization characteristics were demonstrated: (a) absence of chain termination; (b) linear correlation between M-n and polymer yield; (c) increment of molecular weight in the 'seeding' polymerization. Though some deviation from the typical living polymerization such as molecular weight distribution is not narrow enough and the line of M-n and polymer yield does not extrapolate to zero, controlled polymerization with the current catalyst can still be concluded.
Resumo:
The photoluminescence (PL) and electroluminescence (EL) properties of a samarium complex Sm(TTA)(3)phen (TTA = 2-thenoyltri-fluoroacetonate, phen = 1, 10-phenanthroline) were investigated. The results show that Sm(TTA)3phen could be used as promising luminescent and electron transporting material in the electroluminescent devices. The difference between PL and EL spectra was noticed and discussed. Besides, it is noteworthy that the choice of the hole transporting layer (HTL) showed significant effect on the device performance, which was explained by the low-lying highest occupied molecular orbit (HOMO) level of Sm(TTA)3phen and the different hole injection barrier at the HTL/EML (emitting material layer) interface.
Resumo:
Anew class of bifunctional architecture combining the useful functions of superparamagnetism and terbium complex luminescence into one material has been prepared via two main steps by a modified Stober method and the layer-by-layer (LbL) assembly technique. The obtained bifunctional nanocomposites exhibit superparamagnetic behavior, high fluorescence intensity, and color purity. The architecture has been characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis absorption and emission spectroscopy, X-ray diffraction, and superconducting quantum interference device (SQUID) magnetometry.