996 resultados para CCD(Charge Coupled Device)
Resumo:
This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.
Resumo:
By coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM) an algorithm that combines the advantages of both numerical processes is developed. The main aim of the work concerns the time domain analysis of general three-dimensional wave propagation problems in elastic media. In addition, mathematical and numerical aspects of the related BE-, FE- and BE/FE-formulations are discussed. The coupling algorithm allows investigations of elastodynamic problems with a BE- and a FE-subdomain. In order to observe the performance of the coupling algorithm two problems are solved and their results compared to other numerical solutions.
Resumo:
The aim of this master’s thesis was to specify a system requiring minimal configuration and providing maximal connectivity in the vein of Skype but for device management purposes. As peer-to-peer applications are pervasive and especially as Skype is known to provide this functionality, the research was focused on these technologies. The resulting specification was a hybrid of a tiered hierarchical network structure and a Kademlia based DHT. A prototype was produced as a proof-of-concept for the hierarchical topology, demonstrating that the specification was feasible.
Resumo:
This Master’s Thesis is dedicated to the simulation of new p-type pixel strip detector with enhanced multiplication effect. It is done for high-energy physics experiments upgrade such as Super Large Hadron Collider especially for Compact Muon Solenoid particle track silicon detectors. These detectors are used in very harsh radiation environment and should have good radiation hardness. The device engineering technology for developing more radiation hard particle detectors is used for minimizing the radiation degradation. New detector structure with enhanced multiplication effect is proposed in this work. There are studies of electric field and electric charge distribution of conventional and new p-type detector under reverse voltage bias and irradiation. Finally, the dependence of the anode current from the applied cathode reverse voltage bias under irradiation is obtained in this Thesis. For simulation Silvaco Technology Computer Aided Design software was used. Athena was used for creation of doping profiles and device structures and Atlas was used for getting electrical characteristics of the studied devices. The program codes for this software are represented in Appendixes.
Resumo:
The purpose of the thesis is to examine how a medical device manufacturer can exploit social networking sites as a part of its everyday marketing communications. The ultimate goal is to create an ideal process of developing marketing communications in social networking sites as a medical device manufacturer with the help of theoretical knowledge and hands-on experience. Theoretical part examines the traditional process of developing marketing communications, defines social networking sites and presents marketing activities carried out on these sites as well as introduces the characteristics of healthcare technology industry. Empirical part is collected through participation in medical device manufacturer’s marketing operations and by observing effects of different factors and actions on social media marketing. In addition, completed interviews and a meeting with company’s personnel have been utilized for data collection. This part offers comprehensive information on the examined company’s current marketing operations, industry, and activities carried out on social networking sites. As a result of the thesis a comprehensive process description of integrating and using social networking sites as a part of company’s marketing communications was formed. With the help of the process description factors and actions which have an effect on marketing operations in social networking sites are presented and methods for further developing these activities are introduced.
Resumo:
Tässä diplomityössä tutkittiin vaihtoehtoja tehoelektroniikkalaitteiden kotelointiluokan kehittämiseksi. Haasteena paremman suojauksen suunnittelussa on laitteiden tuottama suuri määrä lämpöä, joka vaatii tehokkaan jäähdytyksen. Työn tuloksena saatu prototyyppi IP33 luokkaa varten täyttää standardissa SFS-EN 60529+A1 asetetut vaatimukset kyseiselle kotelointiluokalle. Rakenteessa ja valmistettavuudessa havaittiin muutama ongelma, jotka ovat korjattavissa pienillä muutoksilla. Korkeampia suojausluokkia varten testattiin IP54-luokiteltujen filtterituulettimien vaikutusta laitteen jäähdytykseen. Testien perusteella jäähdytysteho on riittävä ja filtterituulettimet todettiin toimivaksi ratkaisuksi korkeammille suojausluokille. Työn perusteella voidaan todeta, että nykyiset laitteet voidaan muokata vastaamaan IP33 luokan vaatimuksia kohtuullisen pienillä muutoksilla. Tätä korkeammat suojausluokat vaatisivat niin suuria muutoksia designiin, että todennäköisesti täysin uuden laitteen suunnittelu olis kannattavin vaihtoehto.
Resumo:
The main objective of the present study was to design an agricultural robot, which work is based on the generation of the electricity by the solar panel. To achieve the proper operation of the robot according to the assumed working cycle the detailed design of the main equipment was made. By analysing the possible areas of implementation together with developments, the economic forecast was held. As a result a decision about possibility of such device working in agricultural sector was made and the probable topics of the further study were found out.
Resumo:
Paper-based analytical technologies enable quantitative and rapid analysis of analytes from various application areas including healthcare, environmental monitoring and food safety. Because paper is a planar, flexible and light weight substrate, the devices can be transported and disposed easily. Diagnostic devices are especially valuable in resourcelimited environments where diagnosis as well as monitoring of therapy can be made even without electricity by using e.g. colorimetric assays. On the other hand, platforms including printed electrodes can be coupled with hand-held readers. They enable electrochemical detection with improved reliability, sensitivity and selectivity compared with colorimetric assays. In this thesis, different roll-to-roll compatible printing technologies were utilized for the fabrication of low-cost paper-based sensor platforms. The platforms intended for colorimetric assays and microfluidics were fabricated by patterning the paper substrates with hydrophobic vinyl substituted polydimethylsiloxane (PDMS) -based ink. Depending on the barrier properties of the substrate, the ink either penetrates into the paper structure creating e.g. microfluidic channel structures or remains on the surface creating a 2D analog of a microplate. The printed PDMS can be cured by a roll-ro-roll compatible infrared (IR) sintering method. The performance of these platforms was studied by printing glucose oxidase-based ink on the PDMS-free reaction areas. The subsequent application of the glucose analyte changed the colour of the white reaction area to purple with the colour density and intensity depending on the concentration of the glucose solution. Printed electrochemical cell platforms were fabricated on paper substrates with appropriate barrier properties by inkjet-printing metal nanoparticle based inks and by IR sintering them into conducting electrodes. Printed PDMS arrays were used for directing the liquid analyte onto the predetermined spots on the electrodes. Various electrochemical measurements were carried out both with the bare electrodes and electrodes functionalized with e.g. self assembled monolayers. Electrochemical glucose sensor was selected as a proof-of-concept device to demonstrate the potential of the printed electronic platforms.
Resumo:
Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.
Resumo:
G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.
Resumo:
A new protocol is described for immunization of outbred Swiss mice. The procedure is based on subcutaneous implantation of antigen-coupled polyester-polyurethane sponges cut into disks of 10 mm in diameter vs 2 mm in thickness. Antigen coupling was performed by overnight incubation of the sponge with a solution of ovalbumin (Ova) (2 mg/ml) diluted in sodium carbonate buffer, pH 9.6. The amount of ovalbumin that was taken up by the sponge was between 71.4 to 82.5 µg. This was estimated by comparing the Ova absorbance at 280 nm in coating buffer solutions before and after incubation. To compare the efficiency of the proposed method, experimental groups immunized with the antigen in the presence of adjuvants (10 µg in Al(OH)3 or 100 µg in complete Freund's adjuvant (CFA)) were run in parallel. The data obtained after the 3rd week of immunization indicate that both cellular and humoral immune responses were achieved. These were assayed by antigen-induced footpad swelling and ELISA (specific antibodies), respectively. The levels of both immune responses elicited were similar to the responses observed in mice immunized with ovalbumin in the presence of Al(OH)3. The method might represent an advantage when immunizing with pathogenic antigens. Preliminary experiments have suggested that the antigen remains immobilized or bound to the sponge for a long period of time, since there is an increment on the cell population inside the sponges after boosting the animals. If so, the undesirable effects of immunization would be reduced.
Resumo:
Although gap junction channels are still widely viewed as large, non-specific pores connecting cells, the diversity in the connexin family has led more attention to be focused on their permeability characteristics. We summarize here the current status of these investigations, both published and on-going, that reveal both charge and size selectivity between gap junction channels composed of different connexins. In particular, this review will focus on quantitative approaches that monitor the expression level of the connexins, so that it is clear that differences that are seen can be attributed to channel properties. The degree of selectivity that is observed is modest compared to other channels, but is likely to be significant for biological molecules that are labile within the cell. Of particular relevance to the in vivo function of gap junctions, recent studies are summarized that demonstrate that the connexin phenotype can control the nature of the endogenous traffic between cells, with consequent effects on biological effects of gap junctions such as tumor suppression.
Resumo:
A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.
Resumo:
Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.