969 resultados para Attouch-Wets Topology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les R-loops générés durant la transcription sont impliqués dans de nombreuse fonctions incluant la réplication, la recombinaison et l’expression génique tant chez les procaryotes que chez les eucaryotes. Plusieurs études ont montré qu’un excès de supertours négatifs et des séquences riches en bases G induisent la formation de R-loops. Jusqu’à maintenant, nos résultats nous ont permis d’établir un lien direct entre les topoisomérases, le niveau de surenroulement et la formation de R-loops. Cependant, le rôle physiologique des R-loops est encore largement inconnu. Dans le premier article, une étude détaillée du double mutant topA rnhA a montré qu’une déplétion de RNase HI induit une réponse cellulaire qui empêche la gyrase d’introduire des supertours. Il s’agit ici, de la plus forte évidence supportant les rôles majeurs de la RNase HI dans la régulation du surenroulement de l’ADN. Nos résultats ont également montré que les R-loops pouvaient inhiber l’expression génique. Cependant, les mécanismes exacts sont encore mal connus. L’accumulation d’ARNs courts au détriment d’ARNs pleine longueur peut être causée soit par des blocages durant l’élongation de la transcription soit par la dégradation des ARNs pleine longueur. Dans le deuxième article, nous montrons que l’hypersurenroulement négatif peut mener à la formation de R-loops non-spécifiques (indépendants de la séquence nucléotidique). La présence de ces derniers, engendre une dégradation massive des ARNs et ultimement à la formation de protéines tronquées. En conclusion, ces études montrent l’évidence d’un lien étroit entre la RNase HI, la formation des R-loops, la topologie de l’ADN et l’expression génique. De plus, elles attestent de la présence d’un nouvel inhibiteur de gyrase ou d’un mécanisme encore inconnu capable de réguler son activité. Cette surprenante découverte est élémentaire sachant que de nombreux antibiotiques ciblent la gyrase. Finalement, ces études pourront servir également de base à des recherches similaires chez les cellules eucaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Une première partie de ce mémoire portera sur l’analyse des états fondamentaux ma- gnétiques de deux composés isolants et magnétiquement frustrés SrDy2O4 et SrHo2O4. Une étude de la chaleur spécifique à basse température sous l’effet de champs magné- tiques de ces échantillons a été menée afin de détecter la présence de transitions de phases. L’utilisation d’un composé isotructurel non magnétique, le SrLu2O4, a permis l’isolement de la composante magnétique à la chaleur spécifique. Les comportements observés sont non conformes avec les transitions magnétiques conventionnelles. De plus, le calcul de l’entropie magnétique ne montre qu’un recouvrement partiel de l’entropie associée à un système d’ions magnétiques. En second lieu, une analyse des oscillations quantiques de Haas-van Alphen a été effectuée dans le LuCoIn5, composé apparenté au supraconducteur à fermions lourds CeCoIn5. Les résultats obtenus montrent une topologie de la surface de Fermi très différente comparativement aux CeCoIn5 et LaCoIn5, ayant un comportement beaucoup plus tridimensionnel sans les cylindres caractéristiques présents chez les autres membres de cette famille. Finalement, le montage d’un système de détection PIXE a permis l’analyse nucléaire d’échantillons afin de déterminer la concentration de chacun des éléments les constituant. L’analyse a été effectuée sur une série d’échantillons YbxCe1−xCoIn5 dont le changement de concentration a des effets importants sur les propriétés du système.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bien que les champignons soient régulièrement utilisés comme modèle d'étude des systèmes eucaryotes, leurs relations phylogénétiques soulèvent encore des questions controversées. Parmi celles-ci, la classification des zygomycètes reste inconsistante. Ils sont potentiellement paraphylétiques, i.e. regroupent de lignées fongiques non directement affiliées. La position phylogénétique du genre Schizosaccharomyces est aussi controversée: appartient-il aux Taphrinomycotina (précédemment connus comme archiascomycetes) comme prédit par l'analyse de gènes nucléaires, ou est-il plutôt relié aux Saccharomycotina (levures bourgeonnantes) tel que le suggère la phylogénie mitochondriale? Une autre question concerne la position phylogénétique des nucléariides, un groupe d'eucaryotes amiboïdes que l'on suppose étroitement relié aux champignons. Des analyses multi-gènes réalisées antérieurement n'ont pu conclure, étant donné le choix d'un nombre réduit de taxons et l'utilisation de six gènes nucléaires seulement. Nous avons abordé ces questions par le biais d'inférences phylogénétiques et tests statistiques appliqués à des assemblages de données phylogénomiques nucléaires et mitochondriales. D'après nos résultats, les zygomycètes sont paraphylétiques (Chapitre 2) bien que le signal phylogénétique issu du jeu de données mitochondriales disponibles est insuffisant pour résoudre l'ordre de cet embranchement avec une confiance statistique significative. Dans le Chapitre 3, nous montrons à l'aide d'un jeu de données nucléaires important (plus de cent protéines) et avec supports statistiques concluants, que le genre Schizosaccharomyces appartient aux Taphrinomycotina. De plus, nous démontrons que le regroupement conflictuel des Schizosaccharomyces avec les Saccharomycotina, venant des données mitochondriales, est le résultat d'un type d'erreur phylogénétique connu: l'attraction des longues branches (ALB), un artéfact menant au regroupement d'espèces dont le taux d'évolution rapide n'est pas représentatif de leur véritable position dans l'arbre phylogénétique. Dans le Chapitre 4, en utilisant encore un important jeu de données nucléaires, nous démontrons avec support statistique significatif que les nucleariides constituent le groupe lié de plus près aux champignons. Nous confirmons aussi la paraphylie des zygomycètes traditionnels tel que suggéré précédemment, avec support statistique significatif, bien que ne pouvant placer tous les membres du groupe avec confiance. Nos résultats remettent en cause des aspects d'une récente reclassification taxonomique des zygomycètes et de leurs voisins, les chytridiomycètes. Contrer ou minimiser les artéfacts phylogénétiques telle l'attraction des longues branches (ALB) constitue une question récurrente majeure. Dans ce sens, nous avons développé une nouvelle méthode (Chapitre 5) qui identifie et élimine dans une séquence les sites présentant une grande variation du taux d'évolution (sites fortement hétérotaches - sites HH); ces sites sont connus comme contribuant significativement au phénomène d'ALB. Notre méthode est basée sur un test de rapport de vraisemblance (likelihood ratio test, LRT). Deux jeux de données publiés précédemment sont utilisés pour démontrer que le retrait graduel des sites HH chez les espèces à évolution accélérée (sensibles à l'ALB) augmente significativement le support pour la topologie « vraie » attendue, et ce, de façon plus efficace comparée à d'autres méthodes publiées de retrait de sites de séquences. Néanmoins, et de façon générale, la manipulation de données préalable à l'analyse est loin d’être idéale. Les développements futurs devront viser l'intégration de l'identification et la pondération des sites HH au processus d'inférence phylogénétique lui-même.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement et de la contraction symplectique, que nous définissons relative à une sous-variété lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que nous éclatons une configuration suffisament symmetrique des plongements de boules, nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement ~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier le packing relatif dans (ℂP²,ℝP²).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck. Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude. L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure. L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique. La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques. Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles. D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mon projet de recherche avait pour but de caractériser le rôle de deux protéines, ArgR et PepA, qui agissent en tant que facteurs accessoires de la recombinaison au niveau de deux sites cer du plasmide ColE1 présent dans la bactérie Escherichia coli. Ces deux protéines, couplées aux deux recombinases à tyrosine XerC et XerD, permettent la catalyse de la recombinaison site spécifique au niveau de la séquence cer, convertissant les multimères instables de ColE1 en monomères stables. Cette étude a principalement porté sur la région C-terminale de la protéine ArgR. Cette région de la protéine ArgR possède une séquence en acides-aminés et une structure similaire à celle de la protéine AhrC de Bacillus subtilis. De plus, AhrC, le répresseur de l’arginine de cette bactérie, est capable de complémenter des Escherichia coli mutantes déficientes en ArgR. Les régions C-terminales de ces protéines, montrent une forte similarité. De précédents travaux dans notre laboratoire ont démontré que des mutants d’ArgR comprenant des mutations dans cette région, en particulier les mutants ArgR149, une version tronquée d’ArgR de 149 acides-aminés, et ArgR5aa, une version comprenant une insertion de cinq acides-aminés dans la partie C-terminale, perdaient la capacité de permettre la recombinaison au niveau de deux sites cer présents dans le plasmide pCS210. Malgré cette incapacité à promouvoir la réaction de recombinaison en cer, ces deux mutants étaient toujours capables de se lier spécifiquement à l’ADN et de réprimer une fusion argA :: lacZ. Dans ce travail, les versions mutantes et sauvages d’ArgR furent surexprimées en tant que protéines de fusion 6-histidine. Des analyses crosslinking ont montré que la version sauvage et ArgR5aa pouvaient former des hexamères in-vitro de manière efficace, alors qu’ArgR149 formait des multimères de plus faible poids moléculaire. Des formes tronquées d’ArgR qui comportaient 150 acides-aminés ou plus, étaient encore capables de permettre la recombinaison en cer. Les mutants par substitution ArgRL149A et ArgRL151A ont tous montré que les substitutions d’un seul acide-aminé au sein de cette région avaient peu d’effets sur la recombinaison en cer. Les expériences de crosslinking protéine-à-protéine ont montré que le type sauvage et les formes mutantes d’ArgR étaient capables d’interagir avec la protéine accessoire PepA, également impliquée dans la recombinaison en cer. Les expériences de recombinaison in-vitro utilisant la forme sauvage et les formes mutantes d’ArgR combinées avec les protéines PepA, XerC et XerD purifiées, ont montré que le mutant ArgR149 ne soutenait pas la recombinaison, mais que le mutant ArgR5aa permettait la formation d’une jonction d’Holliday. Des expériences de topologie ont montré que PepA était capable de protéger l’ADN de la topoisomérase 1, et d’empêcher ArgRWt de se lier à l’ADN. Les deux mutants ArgR149 et ArgR5aa protègent aussi l’ADN avec plus de surenroulements. Quand on ajoute PepA, les profils de migration montrent un problème de liaison des deux mutants avec PepA. D’autres expériences impliquant le triplet LEL (leucine-acide glutamique-leucine) et les acides-aminés alentour devraient être réalisés dans le but de connaitre l’existence d’un site de liaison potentiel pour PepA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La représentation d'une surface, son lissage et son utilisation pour l'identification, la comparaison, la classification, et l'étude des variations de volume, de courbure ou de topologie sont omniprésentes dans l'aire de la numérisation. Parmi les méthodes mathématiques, nous avons retenu les transformations difféomorphiques d'un pattern de référence. Il y a un grand intérêt théorique et numérique à approcher un difféomorphisme arbitraire par des difféomorphismes engendrés par des champs de vitesses. Sur le plan théorique la question est : "est-ce que le sous-groupe de difféomorphismes engendrés par des champs de vitesses est dense dans le groupe plus large de Micheletti pour la métrique de Courant ?" Malgré quelques progrès réalisés ici, cette question demeure ouverte. Les pistes empruntées ont alors convergé vers le sous-groupe de Azencott et de Trouvé et sa métrique dans le cadre de l'imagerie. Elle correspond à une notion de géodésique entre deux difféomorphismes dans leur sous-groupe. L'optimisation est utilisée pour obtenir un système d'équations état adjoint caractérisant la solution optimale du problème d'identification à partir des observations. Cette approche est adaptée à l'identification de surfaces obtenues par un numériseur tel que, par exemple, le scan d'un visage. Ce problème est beaucoup plus difficile que celui d'imagerie. On doit alors introduire un système de référence courbe et une surface à facettes pour les calculs. On donne la formulation du problème d'identification et du calcul du changement de volume par rapport à un scan de référence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les systèmes multiprocesseurs sur puce électronique (On-Chip Multiprocessor [OCM]) sont considérés comme les meilleures structures pour occuper l'espace disponible sur les circuits intégrés actuels. Dans nos travaux, nous nous intéressons à un modèle architectural, appelé architecture isométrique de systèmes multiprocesseurs sur puce, qui permet d'évaluer, de prédire et d'optimiser les systèmes OCM en misant sur une organisation efficace des nœuds (processeurs et mémoires), et à des méthodologies qui permettent d'utiliser efficacement ces architectures. Dans la première partie de la thèse, nous nous intéressons à la topologie du modèle et nous proposons une architecture qui permet d'utiliser efficacement et massivement les mémoires sur la puce. Les processeurs et les mémoires sont organisés selon une approche isométrique qui consiste à rapprocher les données des processus plutôt que d'optimiser les transferts entre les processeurs et les mémoires disposés de manière conventionnelle. L'architecture est un modèle maillé en trois dimensions. La disposition des unités sur ce modèle est inspirée de la structure cristalline du chlorure de sodium (NaCl), où chaque processeur peut accéder à six mémoires à la fois et où chaque mémoire peut communiquer avec autant de processeurs à la fois. Dans la deuxième partie de notre travail, nous nous intéressons à une méthodologie de décomposition où le nombre de nœuds du modèle est idéal et peut être déterminé à partir d'une spécification matricielle de l'application qui est traitée par le modèle proposé. Sachant que la performance d'un modèle dépend de la quantité de flot de données échangées entre ses unités, en l'occurrence leur nombre, et notre but étant de garantir une bonne performance de calcul en fonction de l'application traitée, nous proposons de trouver le nombre idéal de processeurs et de mémoires du système à construire. Aussi, considérons-nous la décomposition de la spécification du modèle à construire ou de l'application à traiter en fonction de l'équilibre de charge des unités. Nous proposons ainsi une approche de décomposition sur trois points : la transformation de la spécification ou de l'application en une matrice d'incidence dont les éléments sont les flots de données entre les processus et les données, une nouvelle méthodologie basée sur le problème de la formation des cellules (Cell Formation Problem [CFP]), et un équilibre de charge de processus dans les processeurs et de données dans les mémoires. Dans la troisième partie, toujours dans le souci de concevoir un système efficace et performant, nous nous intéressons à l'affectation des processeurs et des mémoires par une méthodologie en deux étapes. Dans un premier temps, nous affectons des unités aux nœuds du système, considéré ici comme un graphe non orienté, et dans un deuxième temps, nous affectons des valeurs aux arcs de ce graphe. Pour l'affectation, nous proposons une modélisation des applications décomposées en utilisant une approche matricielle et l'utilisation du problème d'affectation quadratique (Quadratic Assignment Problem [QAP]). Pour l'affectation de valeurs aux arcs, nous proposons une approche de perturbation graduelle, afin de chercher la meilleure combinaison du coût de l'affectation, ceci en respectant certains paramètres comme la température, la dissipation de chaleur, la consommation d'énergie et la surface occupée par la puce. Le but ultime de ce travail est de proposer aux architectes de systèmes multiprocesseurs sur puce une méthodologie non traditionnelle et un outil systématique et efficace d'aide à la conception dès la phase de la spécification fonctionnelle du système.