962 resultados para Algebraic Integers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we present our work about some generalisations of ideas, techniques and physical interpretations typical for integrable models to one of the most outstanding advances in theoretical physics of nowadays: the AdS/CFT correspondences. We have undertaken the problem of testing this conjectured duality under various points of view, but with a clear starting point - the integrability - and with a clear ambitious task in mind: to study the finite-size effects in the energy spectrum of certain string solutions on a side and in the anomalous dimensions of the gauge theory on the other. Of course, the final desire woul be the exact comparison between these two faces of the gauge/string duality. In few words, the original part of this work consists in application of well known integrability technologies, in large parte borrowed by the study of relativistic (1+1)-dimensional integrable quantum field theories, to the highly non-relativisic and much complicated case of the thoeries involved in the recent conjectures of AdS5/CFT4 and AdS4/CFT3 corrspondences. In details, exploiting the spin chain nature of the dilatation operator of N = 4 Super-Yang-Mills theory, we concentrated our attention on one of the most important sector, namely the SL(2) sector - which is also very intersting for the QCD understanding - by formulating a new type of nonlinear integral equation (NLIE) based on a previously guessed asymptotic Bethe Ansatz. The solutions of this Bethe Ansatz are characterised by the length L of the correspondent spin chain and by the number s of its excitations. A NLIE allows one, at least in principle, to make analytical and numerical calculations for arbitrary values of these parameters. The results have been rather exciting. In the important regime of high Lorentz spin, the NLIE clarifies how it reduces to a linear integral equations which governs the subleading order in s, o(s0). This also holds in the regime with L ! 1, L/ ln s finite (long operators case). This region of parameters has been particularly investigated in literature especially because of an intriguing limit into the O(6) sigma model defined on the string side. One of the most powerful methods to keep under control the finite-size spectrum of an integrable relativistic theory is the so called thermodynamic Bethe Ansatz (TBA). We proposed a highly non-trivial generalisation of this technique to the non-relativistic case of AdS5/CFT4 and made the first steps in order to determine its full spectrum - of energies for the AdS side, of anomalous dimensions for the CFT one - at any values of the coupling constant and of the size. At the leading order in the size parameter, the calculation of the finite-size corrections is much simpler and does not necessitate the TBA. It consists in deriving for a nonrelativistc case a method, invented for the first time by L¨uscher to compute the finite-size effects on the mass spectrum of relativisic theories. So, we have formulated a new version of this approach to adapt it to the case of recently found classical string solutions on AdS4 × CP3, inside the new conjecture of an AdS4/CFT3 correspondence. Our results in part confirm the string and algebraic curve calculations, in part are completely new and then could be better understood by the rapidly evolving developments of this extremely exciting research field.