On a generalization of the Oberwolfach problem


Autoria(s): Cavenagh, N. J.; El-Zanati, S. I.; Khodkar, A.; Vanden Eynden, C.
Contribuinte(s)

H. Barcelo

Data(s)

01/01/2004

Resumo

Let e(1),e(2),... e(n) be a sequence of nonnegative integers Such that the first non-zero term is not one. Let Sigma(i=1)(n) e(i) = (q - 1)/2, where q = p(n) and p is an odd prime. We prove that the complete graph on q vertices can be decomposed into e(1) C-pn-factors, e(2) C-pn (1)-factors,..., and e(n) C-p-factors. (C) 2004 Elsevier Inc. All rights reserved.

Identificador

http://espace.library.uq.edu.au/view/UQ:68107

Idioma(s)

eng

Publicador

Academic Press

Palavras-Chave #Mathematics #Oberwolfach Problems #2-factorization #Graphs #C1 #230101 Mathematical Logic, Set Theory, Lattices And Combinatorics #780101 Mathematical sciences #0199 Other Mathematical Sciences
Tipo

Journal Article