970 resultados para 101-634


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rezension von: Georg Breidenstein: Zeugnisnotenbesprechung. Zur Analyse der Praxis schulischer Leistungsbewertung. Opladen / Berlin / Toronto: Barbara Budrich 2012 (101 S.; ISBN 978-3-86649-466-4)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isobaric vapor-liquid equilibria of binary mixtures of isopropyl acetate plus an alkanol (1-propanol, 2-propanol, 1-butanol, or 2-butanol) were measured at 101.32 kPa, using a dynamic recirculating still. An azeotropic behavior was observed only in the mixtures of isopropyl acetate + 2-propanol and isopropyl acetate + 1-propanol. The application of four thermodynamic consistency tests (the Herington test, the Van Ness test, the infinite dilution test, and the pure component test) showed the high quality of the experimental data. Finally, both NRTL and UNIQUAC activity coefficient models were successfully applied in the correlation of the measured data, with the average absolute deviations in vapor phase composition and temperature of 0.01 and 0.16 K, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To search for novel biomarkers for early diagnosis of cervical cancer, as well as novel therapeutic target for cervical cancer. Methods: A total of 96 cervical tissue specimens were collected from patients in the Second Affiliated Hospital of Zhengzhou University, out of which 10 were normal control. The remaining specimens (86) were cervical cancer specimens and were divided into 4 groups (A - D) based on tumor-biomarker levels of CA125 and SCC. Quantitative real-time polymerase chain reaction technology (qRT-PCR) was used to detect the expressions of miRNA-143, miRNA-34A, miRNA-944, miRNA-101 and miRNA-218 in the cervical cancer tissues. Results: The levels of CA125 (U/mL) and SCC (ug/L) expressed in normal control group and groups A - D were 11.75 and 0.73 (n = 10), 382 and 2.72 (n = 25), 912.9 and 3.93 (n = 21), 1675 and 5.87 (n = 29), and 2120 and 6.66 (n = 11), respectively. Furthermore, qRT-PCR results showed that the expressions of miRNA-944 and miRNA-218 in cervical cancer tissues were markedly up-regulated compared to normal control tissues (p < 0.01). In contrast, the expression level of miRNA-143, miRNA-34A, and miRNA-101 were significantly decreased (p < 0.01). Conclusion: The biomarkers, miRNA-143, miRNA-34A, miRNA-944, miRNA-101 and miRNA-218, can be considered novel for early diagnosis of cervical cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data are lacking on the characteristics of atrial activity in centenarians, including interatrial block (IAB). The aim of this study was to describe the prevalence of IAB and auricular arrhythmias in subjects older than 100 years and to elucidate their clinical implications. We studied 80 centenarians (mean age 101.4 ± 1.5 years; 21 men) with follow-ups of 6–34 months. Of these 80 centenarians, 71 subjects (88.8%) underwent echocardiography. The control group comprised 269 septuagenarians. A total of 23 subjects (28.8%) had normal P wave, 16 (20%) had partial IAB, 21 (26%) had advanced IAB, and 20 (25.0%) had atrial fibrillation/flutter. The IAB groups exhibited premature atrial beats more frequently than did the normal P wave group (35.1% vs 17.4%; P < .001); also, other measurements in the IAB groups frequently fell between values observed in the normal P wave and the atrial fibrillation/flutter groups. These measurements included sex preponderance, mental status and dementia, perceived health status, significant mitral regurgitation, and mortality. The IAB group had a higher previous stroke rate (24.3%) than did other groups. Compared with septuagenarians, centenarians less frequently presented a normal P wave (28.8% vs 53.5%) and more frequently presented advanced IAB (26.3% vs 8.2%), atrial fibrillation/flutter (25.0% vs 10.0%), and premature atrial beats (28.3 vs 7.0%) (P < .01). Relatively few centenarians (<30%) had a normal P wave, and nearly half had IAB. Our data suggested that IAB, particularly advanced IAB, is a pre–atrial fibrillation condition associated with premature atrial beats. Atrial arrhythmias and IAB occurred more frequently in centenarians than in septuagenarians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This table gives the net present value at 2 per cent for weeks 101 through 500.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En juin 2009, le colloque de l'Association québécoise de pédagogie collégial (AQPC) portait le titre Pour des apprentissages durables. Les participants et participantes du colloque échangeaient donc sur les moyens qui peuvent être mis en place pour que les étudiants et étudiantes gardent les connaissances acquises sur le long terme. Lors de ce colloque, plusieurs ateliers et conférences ont porté sur les méthodes d'enseignement novatrices comme l'apprentissage par projet. Toutefois, très peu ont touché au potentiel des émotions vécues dans une classe pour favoriser l'élaboration de la mémoire à long terme. Notre recherche porte précisément sur ce thème. Elle se situe dans le cadre d'un cours de biologie obligatoire pour tous les étudiants et étudiantes du programme de Sciences de la nature : Évolution et diversité du vivant (101-NYA-05). La problématique a été établie à partir de certaines observations faites dans trois collèges où le chercheur principal a oeuvré. Il s'agit du Cégep de Victoriaville, du Cégep François-Xavier-Garneau et du Cégep de Lévis-Lauzon. C'est toutefois à l'intérieur du Cégep de Lévis-Lauzon que la recherche a été menée. Parmi ces observations, on note d'abord qu'à l'intérieur des cours de biologie en général, l'exposé magistral occupe une place importante. Certains problèmes reliés à l'abandon du cours Évolution et diversité du vivant ou aux taux de réussite reliés à ce cours ont également été observés. Enfin, l'action des enseignants et enseignantes porte surtout sur le traitement cognitif des contenus, les émotions étant peu prises en considération. Il est de notre avis que faire plus de place aux émotions en classe —notamment durant l'exposé magistral — pourrait améliorer le processus de mémorisation à long terme ce qui pourrait avoir un impact éventuel sur les taux de réussite. Cela nous a amenés à formuler l'objectif général de notre recherche qui est d'établir un lien entre ce qui est conservé dans la mémoire à long terme et les émotions qui ont pu être vécues par les étudiantes et étudiants lors de l'apprentissage dans le cadre du cours Évolution et diversité du vivant. Le cadre de référence sur lequel s'est appuyée notre recherche repose en premier lieu sur le développement de deux concepts : émotions et mémoire. Nous avons d'abord défini le concept d'émotion, établi une liste de mots permettant l'expression d'émotions et mis en relief les relations qui existent entre les émotions et la cognition. Nous avons ensuite défini le concept de mémoire et en avons présenté les divers types. En deuxième lieu, nous avons présenté les structures cérébrales ainsi que les mécanismes biochimiques qui interviennent lors de l'élaboration de la mémoire à long terme. Le rôle des structures cérébrales impliquées dans les émotions sur la formation de réseaux neuronaux associés à la mémoire y a notamment été exposé. Enfin, des études menées en milieu scolaire portant sur le rôle des émotions en classe ont été présentées. Pour répondre à l'objectif général de notre recherche, nous avons opté pour une recherche qualitative descriptive. Treize étudiants et étudiantes du programme de Sciences de la nature du Cégep de Lévis-Lauzon ont accepté de participer à une entrevue de type semi-dirigé. Ces étudiantes et étudiants étaient tous en dernière session du programme ce qui laissait un écart d'au moins treize mois entre la fin du cours Évolution et diversité du vivant et la participation à l'entrevue. Au cours des entretiens, les participants et participantes avaient à identifier les trois éléments de contenu relié au cours qu'ils avaient le mieux conservés en mémoire. Ils devaient également identifier des émotions vécues à l'intérieur du même cours. Ils pouvaient également présenter des exemples vécus de lien émotion-mémoire dans le cadre du même cours. Les entrevues ont été transcrites et les contenus analysés par segmentation des unités de sens. Les résultats de notre recherche montrent que les participants et participantes de notre étude accordent une grande importance au rôle que jouent les émotions vécues en classe sur leur capacité de mémorisation. À cet égard, plusieurs éléments de contenus identifiés ont pu être reliés à des émotions vécues en classe. Par exemple, la génétique et la sélection naturelle ont fréquemment été reliées à l'amusement ou au plaisir. La surprise est également une émotion qui a été associée à plusieurs éléments de contenu. Il faut toutefois préciser que dans certains cas, les éléments de contenus identifiés n'avaient pas liens évidents avec des émotions vécues en classe. Dans ces cas, le travail personnel a pu avoir un impact positif par exemple. Toutefois, il est clair selon les participants et participantes que les émotions vécues en classe ont pu avoir un rôle déterminant sur la mémorisation de certains éléments de contenus identifiés. Notre analyse permet d'en venir à la même conclusion. À partir de l'analyse des entrevues et des liens qui ont été établis par les participants et participantes entre les émotions vécues et les éléments de contenus mémorisés, nous avons élaboré un répertoire comprenant cinq catégories d'outils permettant de favoriser la construction de la mémoire à long terme en agissant via les émotions vécues en classe. Ces catégories sont l'humour; les actions de l'enseignant ou l'enseignante; les témoignages; les personnifications et les comparaisons; et finalement, les activités et les jeux. Bien que notre recherche se situe dans le contexte d'un cours de biologie propre au programme de Sciences de la nature, le répertoire développé est suffisamment vaste pour être utile, dans des conditions semblables, à l'enseignement d'autres cours au sein de la communauté collégiale. L'exploitation du potentiel des émotions vécues en classe ne peut être considérée comme la recette qui règle tous les problèmes reliés aux apprentissages durables. Cette exploitation peut néanmoins représenter un outil pédagogique intéressant pour quiconque se sentirait à l'aise de l'utiliser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entrepreneurship education has emerged as one popular research domain in academic fields given its aim at enhancing and developing certain entrepreneurial qualities of undergraduates that change their state of behavior, even their entrepreneurial inclination and finally may result in the formation of new businesses as well as new job opportunities. This study attempts to investigate the Colombian student´s entrepreneurial qualities and the influence of entrepreneurial education during their studies.